Skip to main content
Log in

Stress analysis based on strain measurement in sheet metal laser bending

  • Quality Assurance
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Laser application in sheet metal bending represents a flexible forming method, which does not require specialized mechanical tools or large external forces. Whereas the required process parameters leading to simple bending geometries can be estimated to some extent by analytical models, for complex structures it is mostly not possible. A sufficient planning flexibility is generally provided by numerical simulation, yet particularly time-consuming if applied to incremental processes. To optimize this, an extended understanding of the material response during laser beam bending is required. Based on in situ strain and temperature measurements an analysis of incremental stress behavior is undertaken at multiple positions on the laser averted surface. For transient temperature recording a thermal camera is used. The surface strains are continuously detected by an ARAMIS-system. To calculate stress values an approach is proposed, which adapts Hook’s law on stress and strain for two-dimensions and which is further enhanced by plastic strain state and temperature changes. An analysis is provided for stainless steel (1.4301) and pure aluminum (EN AW-1050A), as well as for two cooling time periods in-between cycles. The incremental behavior of localized transversal stresses proves to be particularly complex. In contrast, longitudinal stresses approach a recurring incremental behavior pattern after very few initial laser scans. Furthermore, an indication on a material specific evolution of the plastic zone geometry is won.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Altenpohl D (1965) Aluminium und Aluminiumlegierungen, Reine und angewandte Metallkunde in Einzeldarstellungen, Band 19, Heidelberg, pp 547–570

  2. Edwardson SP, Watkins KG, Dearden G, French P (2003) Strain gauge analysis of laser forming. J Laser Appl 15(8):225–232

    Article  Google Scholar 

  3. Edwardson SP, Moore AJ, Abed E, McBride R, French P, Hand DP, Dearden G, Jones JDC, Watkins KG (2004) Iterative 3D laser forming of continuous surfaces. In: Proceedings of the 23rd ICALEO, laser forming, pp 36–45

  4. Geiger M, Kraus J, Vollertsen F (1994) Laserstrahlumformen räumlicher Bauteile. Bestrahlungsreihenfolge wichtig. Bänder Bleche Rohre 35(11):26–37

    Google Scholar 

  5. Hennige T, Holzer S, Vollertsen F, Geiger M (1997) On the working accuracy of laser bending. J Mater Process Technol 71(3):422–432

    Article  Google Scholar 

  6. Hennige T (2000) Development of irradiation strategies for 3D-laser forming. J Mater Process Technol 103:102–108

    Article  Google Scholar 

  7. Hirt G (ed) (2010) In: Hirt G (ed) Modelling of incremental forming processes. Shaker, Aachen

  8. Holzer S (1996) Berührungslose Formgebung mit Laserstrahlung. Meisenbach, Bamberg

    Google Scholar 

  9. Jeswiet J, Geiger M, Engel U, Kleiner M, Schikorra M, Duflou J, Neugebauer R, Bariani P, Bruschi S (2008) Metal forming progress since 2000. CIRP J Manuf Technol 1:2–17

    Article  Google Scholar 

  10. Mäder HF (1972) Experimentelle spannungsanalyse temperaturbelasteter bauteile durch dehnungsmessungen, chemie ingenieur technik, 44.Jahrgang, Heft 3, 97–144

  11. Namba Y (1986) Laser forming in space. In: Wang CP (ed.) Proceedings of the international conference on lasers’85, pp 403–407

  12. Neugebauer R, Scheffler S, Poprawe R, Weisheit A (2009) Local lase heat treatment of high strength steels to improve formability, (WGP). Prod Eng Res Devel 3:347–351

    Article  Google Scholar 

  13. Ueda T, Sentoku E, Yamada K, Hosokawa A (2005) Temperature measurement in laser forming of sheet metal, CIRP Ann Manuf Technol 54/1:179–182

    Google Scholar 

  14. Vollertsen F (1996) Laserstrahlumformen, lasergestützte Formgebung: Verfahren, Mechanismen, Modellierung. Meisenbach, Bamberg

  15. Vollertsen F, Grden M (2010) Efficient simulation method for incremental thermal sheet bending using plasma. In: Hirt G (ed.) Modelling of incremental forming processes. Shaker, Aachen, pp 75–94

  16. Untersuchung relevanter Einflußgrößen auf die numerische Schweißsimulation (2006) Forschungsberichte des Instituts für Schweißtechnik B. 3. Shaker, Aachen, p 152ff

  17. Yang LJ, Wang Y, Wang ML, Chen YB (2008) Research on 3D laser forming of square metal sheet to spherical dome. Thermal forming and welding distortion. In: Proceedings of the IWOTE’08, BIAS, pp 241–251

  18. Zaeh MF, Hornfleck T (2008) Development of a robust laser beam bending process for aluminum fuselage structures, (WGP). Prod Eng Res Devel 2:149–155

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the DFG (Deutsche Forschungsgemeinschaft) for the financial support of the project VO 530/47-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tetzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetzel, H., Grden, M. & Vollertsen, F. Stress analysis based on strain measurement in sheet metal laser bending. Prod. Eng. Res. Devel. 7, 647–655 (2013). https://doi.org/10.1007/s11740-013-0488-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0488-9

Keywords

Navigation