Skip to main content
Log in

Accounting for shear deformation in fast models for plate rolling

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

For on-line prediction of roll force and torque, fast models have been available for a long time, which are mainly based on the slab method or other solution methods that allow for computing times in the range of seconds. Such fast models typically treat the rolling process as a plane strain problem and neglect shear deformation, which is always present in real processes. The shear deformation results in inhomogeneous strain profiles and thus might lead to inhomogeneity in microstructure over plate thickness. In this paper, a novel method is presented that allows for superposition of shear strain onto the strain state obtained from the slab method. The shear strains are interpolated from an extensive finite element (FE) parameter study of rolling processes that covers the entire parameter range of today’s plate rolling. For the regimes of very thick and thin plates different interpolation functions are introduced. It is shown that when the proposed shear strain model is combined with the slab method, similar results are obtained as with a full-scale FE calculation of the rolling problem but with a calculation time in the range of seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allwood JM, Cullen JM (2012) Sustainable materials with both eyes open. UIT Cambridge Ltd, Cambridge

    Google Scholar 

  2. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211

    Article  Google Scholar 

  3. Helm D, Butz A, Raabe D, Gumbsch P (2011) Microstructure-based description of the deformation of metals: theory and application. JOM 63(4):26–33

    Article  Google Scholar 

  4. Brecher C, Esser M, Witt S (2009) Interaction of manufacturing process and machine tool. CIRP Ann Manuf Technol 58(2):588–607

    Article  Google Scholar 

  5. Crumbach M, Neumann L, Goerdeler M, Aretz H, Gottstein G, Kopp R (2006) Through-process modelling of texture and anisotropy in AA5182. Model Simul Mater Sci Eng 14(5):835–856

    Article  Google Scholar 

  6. Heering C, Li X, Bambach M, Hirt G (2010) Physical and numerical simulation of cold rolling of an AlFeSi alloy in consideration of static recovery. Adv Eng Mater 12(3):141–146

    Article  Google Scholar 

  7. Kármán T (1925) Beitrag zur Theorie des Walzvorganges. Zeitschrift für Angewandte Mathematik und Mechanik 5(2):139–141

    MATH  Google Scholar 

  8. Beynon JH, Sellars CM (1992) Modelling microstructure and its effects during multipass hot rolling. ISIJ 32(3):359–367

    Article  Google Scholar 

  9. Minami K, Siciliano F, Maccagno TM, Jonas JJ (1996) Mathematical modeling of mean flow stress during the hot strip rolling of Nb steels. ISIJ 36(12):1507–1515

    Article  Google Scholar 

  10. Montmitonnet P, Buessler P (1991) A Review on theoretical analyses of rolling in Europe. ISIJ 31(6):525–538

    Article  Google Scholar 

  11. Sellars CM (1990) Modelling microstructural development during hot rolling. Mater Sci Technol 6(11):1072–1081

    Article  Google Scholar 

  12. Lehnert W, Cuong ND, Zengler P (1991) Mathemathische und experimentelle Ermittlung der örtlichen Prozeß- und Gefügeparameter in der Umformzone beim Warmwalzen. Neue Hütte 36(2):46–52

    Google Scholar 

  13. McLaren AJ, Sellars CM (1992) Modelling distribution of microstructure during hot rolling of stainless steel. Mater Sci Technol 8(12):1090–1094

    Article  Google Scholar 

  14. Zhang XJ, Hodgson PD, Thomson PF (1996) The effect of through-thickness strain distribution on the static recrystallization of hot rolled austenitic stainless steel strip. JMPT 60:615–619

    Google Scholar 

  15. Mirza MS, Sellars CM, Karhausen KF, Evans P (2001) Multipass rolling of aluminium alloys finite element simulations and microstructural evolution. Mater Sci Technol 17(7):874–879

    Article  Google Scholar 

  16. Mukhopadhyay A, Howard IC, Sellars CM (2004) Development and validation of a finite element model for hot rolling using ABAQUS/STANDARD. Mater Sci Technol 20(9):1123–1133

    Article  Google Scholar 

  17. Sims RB (1954) The calculation of roll force and torque in hot rolling mills. Proc Inst Mech Eng 168(1):191–200

    Article  Google Scholar 

  18. Lenard JG, Pietrzyk M, Cser L (1999) Mathematical and physical simulation of the properties of hot rolled products. Elsevier, Kidlington

    Google Scholar 

  19. Pawelski O (1963) Umformtechnische Kenngrößen an Warmwalzstraßen. Stahl Eisen 83(23):1440–1451

    Google Scholar 

  20. Sandmark P-A (1972) Comparison of different formulae for the calculation of force in hot-rolling mills. Scand J Metall 1(6):313–318

    Google Scholar 

  21. Schey JA (1984) Workability in rolling. In: Dieter GE (ed) Workability testing techniques. American Society for Metals, Ohio, pp 269–324

    Google Scholar 

  22. Seuren S, Bambach M, Hirt G, Heeg R, Philipp M (2010) Geometric factors for fast calculation of roll force in plate rolling. In: 10th international conference on steel. Metallurgical Industry Press, Beijing

  23. Lachmann L, Zouhar G (1989) Näherungsweise mathematische Modellierung des Materialflusses, der Formänderungs- und Formänderungsgeschwindigkeitsverteilung im Walzspalt beim Warmwalzen auf der Flachbahn. Neue Hütte 34(8):291–295

    Google Scholar 

  24. Eder E (1974) Die Kinematik der Deformation beim Ziehen. Neue Hütte 19(10):603–608

    Google Scholar 

  25. Lachmann L, Zouhar G (1991) Investigation of strain-inhomogeneities during hot flat rolling: influences on the microstructure evolution. Steel Res Int 62(10):447–452

    Google Scholar 

  26. Karhausen KF (1994) Integrierte Prozeß- und Gefügesimulation bei der Warmumformung. Dissertation, Fakultät für Bergbau, Hüttenwesen und Geowissenschaften, RWTH Aachen, Aachen

  27. Ponter ARS, Li XK, Beynon JH (1993) Using the Eulerian finite element method to model hot metal rolling. In: 1st international conference on modelling of metal rolling processes. Imperial College, pp 16–29

  28. Kim SH, Lee JH, Kwak WJ, Hwang SM (2005) Dimensional analysis of hot strip rolling for on-line prediction of thermo-mechanical behavior of roll-strip system. ISIJ 45(2):199–208

    Article  Google Scholar 

  29. Moon C, Lee Y (2009) An approximate model for local strain variation over material thickness and its applications to thick plate rolling process. ISIJ 49(3):402–407

    Article  MathSciNet  Google Scholar 

  30. Mukhopadhyay A, Howard IC, Sellars CM (2005) Finite element modelling of effects of roll gap geometry in hot rolling. Mater Sci Technol 21(8):901–911

    Article  Google Scholar 

  31. Tarnovskii IY, Pozdeyev AA, Lyashkov VB (1965) Deformation of metals during rolling. Pergamon Press, Oxford

    Google Scholar 

  32. Seuren S, Romans T, Recker D, Rosenstock D, Bambach M, Hirt G (2012) Void closure in heavy ingots: a comparison of rolling and open die forging. In: 1st international conference on ingot casting, rolling and forging: ICRF 2012

  33. Seuren S, Willkomm J, Bücker M, Bambach M, Hirt G (2012) Sensitivity analysis of a force and Microstructure model for plate rolling. In: Kusiak J, Majta J, Szeliga D (eds) Proceedings of the 14th international conference on metal forming: steel research international, WILEY-VCH Verlag, Weinheim, pp 91–94

  34. Dubčáková R (2011) Eureqa: software review. Genet Program Evolvable Mach 12(2):173–178

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for the support of the depicted research within the Cluster of Excellence “Integrative Production Technology for High Wage Countries” and our industrial partner Dillinger Hütte GTS for the scientific exchange.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Seuren.

Appendix

Appendix

The proposed analytical functions for the hypothetical shear strain \(\gamma_{xy}^{\prime }\) operate within certain validity boundaries. In terms of process parameters these are given by the chosen parameters as follows: h 0  = 5–900 mm and ε h  = 1–30 %. Due to their analytical nature the domains of the functions have to be analyzed in order to avoid possible discontinuities in the operation of the model.

1.1 Regime I

If the base of the denominator equals zero the function becomes undefined. Consequently the following restriction can be derived:

$$0\mathop < \limits^{!} 0.7807 + k - \frac{{0.8003 \cdot h_{1} }}{{h_{0} }} \Leftrightarrow h_{1} \mathop < \limits^{!} \frac{0.7807 + k}{0.8003} \cdot h_{0}$$

Since naturally h 1 < h 0, it follows that k \(\mathop > \limits^{!}\) 0.0194. For k ∈ [0, 0.02], we propose to use \(\gamma_{xy}^{\prime }\) values of k = 0.02, which leads to mathematical consistency and no relevant deviation in the results, as can be seen in Fig. 7.

1.2 Regime II

As the denominator approaches zero, the equation approaches infinity. Substituting \(h_{0} = h_{1} \; \cdot \;\exp \left( { - \frac{\sqrt 3 }{2}\bar{\varepsilon }} \right)\), the following restriction can be formulated:

$$0\mathop < \limits^{!} h_{1}^{2} + 7.251 \cdot k \cdot h_{1} - 6.564 \cdot k \cdot h_{1} \; \cdot \;\exp \left( { - \frac{\sqrt 3 }{2}\bar{\varepsilon }} \right)$$

Solving for \(\bar{\varepsilon }\), by applying h 1  > 0 and k ≤ 1 yields a criterion for the maximal deformation as a function of the initial height h 1 .

$$\bar{\varepsilon }\mathop < \limits^{!} \frac{2}{\sqrt 3 }\; \cdot \;\ln \left( {\frac{{h_{1} + 7.251}}{6.564}} \right)$$

Extensive analyses of industrial data substantiate, that all process parameters of heavy plate rolling (h 0  > 3 mm) satisfy the above conditions in any case.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seuren, S., Seitz, J., Krämer, A. et al. Accounting for shear deformation in fast models for plate rolling. Prod. Eng. Res. Devel. 8, 17–24 (2014). https://doi.org/10.1007/s11740-013-0500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0500-4

Keywords

Navigation