Skip to main content
Log in

Identification and evaluation of uncertainties and errors in dynamic models of casted machine tool components

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

When calculating the dynamic properties of machine tools by means of the finite-element-analysis, highly correlated component models are needed for the derivation of an accurate model of the assembled machine tool structure. For casted machine tool components this cannot always be ensured due to the significant geometric and material uncertainties inherent in the casting process. In this paper, a stepwise modelling approach for casted machine tool components is proposed that allows the derivation of highly correlated models in a defined frequency range. Based on the assumption of superposition the uncertainties and errors involved in the modelling process are identified and evaluated by means of strain energy considerations. By applying this approach to a casted machine tool column, the initial frequency deviations for the considered first 15 structural modes of up to 15 % from the measured values could be reduced below 3 %. Also deeper insight was gained about the influence of the considered uncertainties and errors on the model correlation, as the deviations could be assigned to their sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For the derivation of the model, damping is neglected due to the very low loss factor of the material [8]. Hence, the undamped eigenfrequencies are assumed to be equal to the damped ones.

  2. The coupled mass model is a MSC.Nastran-specific intermediate formulation between the lumped and the consistent mass matrix approach [23].

  3. This is due to the fact that a modification of ν has the same effect on the (positive) diagonal and the (negative) off-diagonal terms of the element stiffness matrices [K e ], which almost cancel each other out.

Abbreviations

[K]:

Stiffness matrix

[K e ]:

Element stiffness matrix

[M]:

Mass matrix

[M e ]:

Element mass matrix

{f}:

Excitation force vector

{x}:

Nodal displacement coordinates

{x e }:

Element node positions

{ϕ} r :

r-th eigenvector

e } r :

r-th eigenvector at element’s degrees of freedom

ω r :

r-th eigenfrequency in rad s−1

ω r X :

Measured r-th eigenfrequency in rad s−1

ω r A :

Analytical r-th eigenfrequency in rad s−1

f r :

r-th eigenfrequency in Hz

\(\Updelta\omega_{r}\) :

Natural frequency difference for the r-th eigenfrequency in %

U r e :

Modal element strain energy for the r-th eigenvector

u r e :

Modal element strain energy density for the r-th eigenvector

\({\widetilde{U}_{e}}^{k}\) :

Averaged element strain energy ratio for the first k eigenvectors

V e :

Element volume in mm3

f obj :

Objective function

E :

Young’s modulus in N mm−2

ν :

Poisson’s ratio

ρ :

Density in kg m−3

m X :

Measured mass in kg

m A :

Analytical mass in kg

x :

Length in mm

r :

Radius in mm

k :

Integer

References

  1. Lieven NAJ, Ewins DJ (1992) A proposal for standard notation and terminology in modal analysis. In: proceedings of the Xth IMAC, San Diego

  2. Weck M, Brecher C (2006) Berechnung und Konstruktion, Werkzeugmaschinen, vol 2. Springer, Berlin

    Google Scholar 

  3. Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. CIRP Annals Manuf Technol 54(2):115–138

    Article  Google Scholar 

  4. Großmann K, Rudolph H, Brecher C, Fey M, Zäh MF, Niehues K, Schwarz S (2010) Dämpfungseffekte in Werkzeugmaschinen. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 105(7–8):676–680

    Google Scholar 

  5. Ewins DJ (1984) Modal testing: theory and practice. Res Stud Press, Taunton

    Google Scholar 

  6. Maia N, Silva J (1997) Theoretical and experimental modal analysis. Res Stud Press, Taunton

    Google Scholar 

  7. Kehl G, Altstädter H (2003) Simul Model Pract Theory von Werkzeugmaschinen - Ein Bericht aus der Praxis. Simulation 1:32–34

    Google Scholar 

  8. Zäh M, Niehues K, Schwarz S (2011) Struktur- und Fügestellendämpfung in Werkzeugmaschinenstrukturen. No. 2164 in VDI-Berichte, VDI-Verlag, Düsseldorf

  9. Albertz F (1995) Dynamikgerechter Entwurf von Werkzeugmaschinen-Gestellstrukturen. No. 93 in iwb Forschungsberichte, Springer, Berlin

  10. Schneider C (2000) Strukturmechanische Berechnungen in der Werkzeugmaschinenkonstruktion. No. 144 in iwb Forschungsberichte, Herbert Utz, München

  11. Hoffmann F (2008) Optimierung der dynamischen Bahngenauigkeit von Werkzeugmaschinen mit der Mehrkörpersimulation. No. 8/2008 in Ergebnisse aus der Produktionstechnik, Apprimus, Aachen

  12. DIN EN 1563 (2010) Founding – spheroidal graphite cast irons. Beuth, Berlin

  13. Imamovic N (1998) Validation of large structural dynamics models using modal test data. Phd thesis, Imperial College, University of London

  14. Allemang RJ (2003) The modal assurance criterion–twenty years of use and abuse. Sound Vibr August:14–21

  15. Mottershead JE, Link M, Friswell MI (2011) The sensitivity method in finite element model updating: a tutorial. Mech Syst Signal Process 25(7):2275–2296

    Article  Google Scholar 

  16. Lin R, Zhu J (2011) Model updating of damped structures using frf data. Mech Syst Signal Process 20(8):2200–2218

    Article  Google Scholar 

  17. Nebeling PH (1999) Abgleich der dynamischen Eigenschaften numerischer Modelle mit realen mechanischen Strukturen. No. 5/99 in Berichte aus der Produktionstechnik, Shaker, Aachen

  18. Witt ST (2007) Integrierte simulation von maschine, Werkstück und spanendem Fertigungsprozess. No. 31/2007 in Berichte aus der Produktionstechnik, Shaker, Aachen

  19. Garitaonandia I, Fernandes M, Albizuri J (2008) Dynamic model of a centerless grinding machine based on an updated fe model. Int J Mach Tools Manuf 48(7–8):832–840

    Article  Google Scholar 

  20. Alvin KF, Oberkampf WL, Diegert KV, Rutherford BM (1998) Uncertainty quantification in computational structural dyamics: a new paradigm for model validation. In: proceedings of the XVIth IMAC, Santa Barbara

  21. Oberkampf WL, DeLand SM, Rutherford BM, Diegert KV, Alvin KF (2002) Error and uncertainty in modeling and simulation. Reliab Eng Syst Saf 75:333–357

    Article  Google Scholar 

  22. Hanson KM (1999) A framework for assessing uncertainties in simulation predictions. Physica D 133:179–188

    Article  Google Scholar 

  23. MSCSoftware Corporation (2011) MD Nastran 2011 & MSC Nastran 2011 Dynamic Analysis User’s Guide. 2 MacArthur Place, Santa Ana, CA 92707

  24. Hemez FM, Doebling SW (2001) Model validation and uncertainty quantification. In: proceedings of the XIXth IMAC, Kissimmee

  25. Mottershead JE, Goh EL, Shao W (1995) On the treatment of discretisation errors in finite element model updating. Mech Syst Signal Process 9(1):101–112

    Article  Google Scholar 

  26. Fotsch DW (2001) Development of valid fe models for structural dynamic design. Phd thesis, Imperial College, University of London

  27. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

    Google Scholar 

  28. Snyder BD, Venkayya VB (1989) Modal strain energies in cosmic nastran. In: 17th NASTRAN User’s Colloquium, San Antonio, no. 3029 in NASA Conference Publication

  29. Blakely K (1991) Updating msc/nastran models to match test data. In: MSC 1991 world users’ conference proceedings, 5091

  30. Kim TS, Kim YY (2000) Mac-based mode-tracking in structural topology optimization. Comput Struct 74:375–383

    Article  Google Scholar 

  31. MSCSoftware Corporation (2012) MSC Nastran 2012 design sensitivity and optimization user’s guide. 2 MacArthur Place, Santa Ana, CA 92707

  32. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis, 10th edn. Prentice-Hall, New Jersey

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) within the research unit FOR-1087 “Damping effects in Machine Tools”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Schwarz or M. F. Zaeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, S., Sing, A. & Zaeh, M.F. Identification and evaluation of uncertainties and errors in dynamic models of casted machine tool components. Prod. Eng. Res. Devel. 8, 175–185 (2014). https://doi.org/10.1007/s11740-013-0506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0506-y

Keywords

Navigation