Skip to main content

Advertisement

Log in

Integrative technology chain design for small scale manufacturers

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The global manufacturing industry has changed over the years. Individual customer requirements result in multi-variant products characterized by small lot sizes. Up to now, the manufacturing industry has not found an adequate solution for producing small lot sizes in an economic way. Due to this fact, the industry could not adapt the methods defined by Taylor, Ford or even Toyota which are commonly named by industrialization. Although the tool machine industry provides flexible machine centers, this is just a small step towards an industrialized small scale manufacturing. Furthermore the manufacturing industry is facing an increasing international competition due to globalized markets. This leads to an increasing cost pressure. Small scale manufacturers have to transform their workshops into industrialized production facilities characterized by standardized production flows as well as balanced production lines. This paper introduces a multiple-criteria approach for the development of standardized technology chains as a prerequisite for standard production lines and flows for small scale manufacturers using a high number of different manufacturing technologies and consequently characterized by low production flow standardization. Based on a comprehensive, structured workpiece analysis an integrated technology-oriented method was developed for the design of standard technology chains as a prerequisite for standardized production flows. The method was already applied in the industry and has shown a significant increase of production efficiency in terms of lead time and overall product costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Biermann D, Gausemeier J, Hess S, Petersen M, Wagner T (2013) Planning and optimisation of manufacturing process chains for functionally graded components—part 1: methodological foundations. Prod Eng Res Dev 7:657–664. doi:10.1007/s11740-013-0490-2

    Article  Google Scholar 

  2. Bissacco G, Hansen H-N, De Chiffre L (2005) Micromilling of hardened tool steel for mould making applications. J Mater Process Technol 167:201–207. doi:10.1016/j.jmatprotec.2005.05.029

    Article  Google Scholar 

  3. College International pour l’Etude Scientifique des Techniques de Production Mecanique (2004) Dictionary of production engineering, vol 2. Springer, Berlin

  4. Denkena B, Schürmeyer J, Eikötter M (2007) Linking total costs and benefits of ownership (TCBO) and process chain simulation for integrated assessment of manufacturing technologies and processes. Prod Eng Res Dev 5:557–564. doi:10.1007/s11740-011-0313-2

    Article  Google Scholar 

  5. Dombrowski U, Crespo I, Zahn T (2010) A controlling system based on causeeffect relationships for the ramp-up of production systems. Prod Eng Res Dev 4:341–348. doi:10.1007/s11740-010-0250-5

    Article  Google Scholar 

  6. Feenstra RC (1998) Integration of trade and disintegration of production in the global economy. J Econ Perspect 12(4):31–50

    Article  Google Scholar 

  7. Gourevitch P, Bohn R, McKendrick D (2000) Globalization of production: insights from the hard disk drive industry. World Dev 2:301–317. doi:10.1016/S0305-750X(99)00122-9

    Article  Google Scholar 

  8. Gruß R (2010) Zweistufiges Taktphasenmodell zur Steigerung der Prozesseffizienz in der Unikatfertigung auf Basis der Lean production. Springer, Berlin

    Google Scholar 

  9. Klocke F (2011) Manufacturing processes 1. Springer, Berlin

    Book  Google Scholar 

  10. Klocke F, Wilms H (2007) Methodology to describe the influence of manufacturing processes on the part functionality. Prod Eng Res Dev 1:163–168. doi:10.1007/s11740-007-0014-z

    Article  Google Scholar 

  11. Klocke F, Buchholz S (2014) Technology chain optimization: a systematic approach considering the manufacturing history. Prod Eng Res Dev. doi:10.1007/s11740-014-0572-9. ISSN 1863–7353

  12. Klotzbach C (2006) Gestaltungsmodell für den industriellen Werkzeugbau. Dissertation, RWTH Aachen

  13. Milberg J, Müller S (2007) Integrated configuration and holistic evaluation of technology chains within process planning. Prod Eng Res Dev 1:401–406. doi:10.1007/s11740-007-0055-3

    Article  Google Scholar 

  14. Moron O (1998) Unterstützung strategischer Entscheidungen in produzierenden Unternehmen, Dissertation, RWTH Aachen

  15. Patel K, Batish A, Bhattacharya A (2009) Optimization of surface roughness in an end-milling operation using nested experimental design. Prod Eng Res Dev 3:361–373. doi:10.1007/s11740-009-0177-x

    Article  Google Scholar 

  16. Pollack A (1995) Entwicklung eines Informationssystems zur strategischen Planung des Werkzeugbaus, Dissertation, RWTH Aachen

  17. Queudeville Y, Ivanov T, Vroomen U, Bührig-Polaczek A et al (2011) Design methodology for modular tools. Prod Eng Res Dev 5:351–358. doi:10.1007/s11740-011-0318-x

    Article  Google Scholar 

  18. Schuh G, Klotzbach C, Gaus F (2008) Service provision as a sub-model of modern business models. Prod Eng Res Dev 2:79–84. doi:10.1007/s11740-008-0084-6

    Article  Google Scholar 

  19. Schuh G, Boos W, Völker M (2010) Collaboration platforms to enable global service provision in the tooling industry. Prod Eng Res Dev 5:9–16. doi:10.1007/s11740-010-0274-x

    Article  Google Scholar 

  20. Tönnisen S, Klocke F, Feldhaus B, Buchholz S (2012) Modeling the characteristics of multi-technology platforms. Prod Eng Res Dev 6:97–105. doi:10.1007/s11740-011-0357-3

    Article  Google Scholar 

  21. Vargas Vallejos R, Oliveira Gomes J (2005) Applying a benchmarking methodology to empower a virtual organisation. IFIP Adv Inf Commun Technol 159:279–286. doi:10.1007/b99775

    Google Scholar 

  22. Vivancos J, Luis CJ, Costa L, Ortiz JA (2004) Optimal machining parameters selection in high speed milling of hardened steels for injection moulds. J Mater Process Technol 1:1505–1512. doi:10.1016/j.jmatprotec.2004.04.260

    Article  Google Scholar 

  23. Wikner J, Naim MM, Rudberg M (2007) Exploiting the order book for mass customized manufacturing control systems with capacity limitations. IEEE Trans Eng Manag 1:145–155. doi:10.1109/TEM.2006.889073

    Article  Google Scholar 

  24. Winkler H, Heins M, Nyhuis P (2007) Adaptive configuration of a lean production system in small and medium-sized enterprises. Prod Eng Res Dev 1:103–111. doi:10.1007/s11740-007-0011-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Heeschen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klocke, F., Arntz, K. & Heeschen, D. Integrative technology chain design for small scale manufacturers. Prod. Eng. Res. Devel. 9, 109–117 (2015). https://doi.org/10.1007/s11740-014-0590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0590-7

Keywords

Navigation