Skip to main content
Log in

Modelling and simulation of Internal Traverse Grinding: bridging meso- and macro-scale simulations

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

In this work, we focus on the computational bridging between the meso- and macro-scale in the context of the hybrid modelling of Internal Traverse Grinding with electro-plated cBN wheels. This grinding process satisfies the manufacturing industry demands for a high rate of material removal along with a high surface quality while minimising the number of manufacturing processes invoked. To overcome the major problem of the present machining process, namely a highly concentrated thermal load which can result in micro-structural damage and dimension errors of the workpiece, a hybrid simulation framework is currently under development. The latter consists of three components. First, a kinematic simulation that models the grinding wheel surface based on experimentally determined measurements is used to calculate the transient penetration history of every grain intersecting with the workpiece. Secondly, an h-adaptive, plane-strain finite element model incorporating elasto-plastic work hardening, thermal softening and ductile damage is used to simulate the proximity of one cBN grain during grinding and to capture the complex thermo-mechanical material response on a meso-scale. For the third component of the framework, the results from the preceding two simulation steps are combined into a macro-scale process model that shall in the future be used to improve manufacturing accuracy and to develop error compensation strategies accordingly. To achieve this objective, a regression analysis scheme is incorporated to approximate the influence of the several cutting mechanisms on the meso-scale and to transfer the homogenisation-based thermo-mechanical results to the macro-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahearne E, Byrne G (2008) Simulation of the local kinematics in rotational grinding. CIRP Ann Manuf Technol 57(1):333–336. doi:10.1016/j.cirp.2008.03.080

    Article  Google Scholar 

  2. Altintas Y, Kersting P, Biermann D, Budak E, Lazoglu BDI (2014) Virtual process systems for part machining operations. CIRP Ann Manuf Technol 63(2):585–605. doi:10.1016/j.cirp.2014.05.007

    Article  Google Scholar 

  3. Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv 23(3):345–405. doi:10.1145/116873.116880

    Article  Google Scholar 

  4. Aurenhammer F, Klein R, Lee DT, Klein R (2013) Voronoi diagrams and delaunay triangulations. World Scientific, Singapore

    Book  Google Scholar 

  5. Aurich J, Kirsch B (2012) Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains. CIRP J Manuf Sci Technol 5(3):164–174. doi:10.1016/j.cirpj.2012.07.004

    Article  Google Scholar 

  6. Brinksmeier E, Aurich J, Govekar E, Heinzel C, Hoffmeister HW, Klocke F, Peters J, Rentsch R, Stephenson D, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Manuf Technol 55(2):667–696. doi:10.1016/j.cirp.2006.10.003

    Article  Google Scholar 

  7. Chakrabarti S, Paul S (2008) Numerical modelling of surface topography in superabrasive grinding. Int J Adv Manuf Technol 39(1–2):29–38. doi:10.1007/s00170-007-1201-y

    Article  Google Scholar 

  8. Foley JD, Feiner S, Hughes JF, Phillips RL (1994) Introduction to computer graphics. Addison-Wesley Longman Publishing Co, Boston

    MATH  Google Scholar 

  9. Herzenstiel P, Aurich JC (2010) cBN-grinding wheel with a defined grain pattern—extensice numerical and experimental studies. Mach Sci Technol 14(3):301–322. doi:10.1080/10910344.2010.511574

    Article  Google Scholar 

  10. Holtermann R, Schumann D, Menzel A, Biermann D (2014) A hybrid approach to the modelling and simulation of grinding processes. In: Proceedings of 11th World Congress Computational Mechanics (WCCM XI), Ebook, pp 1932–1937

  11. Holtermann R, Schumann S, Menzel A, Biermann D (2013) Modelling, simulation and experimental investigation of chip formation in internal traverse grinding. Prod Eng Res Dev 7(2–3):251–263. doi:10.1007/s11740-013-0449-3

    Article  Google Scholar 

  12. Hortig C (2011) Local and non-local thermomechanical modeling and finite-element simulation of high-speed cutting. Ph.D. thesis, TU Dortmund, Institute of Mechanics

  13. Carslaw HS, Jaeger JC (1959) Conduction of Heat in Solids. Oxford University Press, London

    Google Scholar 

  14. Jackson MJ, Davim JP (2011) Machining with abrasives. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  15. Johnson G, Cook W (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, vol 1, pp 541–547

  16. Joliet R, Kansteiner M (2013) A high resolution surface model for the simulation of honing processes. Adv Mater Res 769:69–76. doi:10.4028/www.scientific.net/AMR.769.69

    Article  Google Scholar 

  17. Koshy P, Iwasald A, Elbestawl M (2003) Surface generation with engineered diamond grinding wheels: insights from simulation. CIRP Ann Manuf Technol 52(1):271–274. doi:10.1016/S0007-8506(07)60582-4

    Article  Google Scholar 

  18. Kumar S, Paul S (2012) Numerical modelling of ground surface topography: effect of traverse and helical superabrasive grinding with touch dressing. Prod Eng Res Dev 6(2):199–204. doi:10.1007/s11740-012-0370-1

    Article  MATH  Google Scholar 

  19. Liu Y, Warkentin A, Bauer R, Gong Y (2013) Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations. Precis Eng 37(3):758–764. doi:10.1016/j.precisioneng.2013.02.009

    Article  Google Scholar 

  20. Marschalkowski K (2010) Beitrag zur Prozessentwicklung für das Hochleistungsinnenrund-Schälschleifen mit galvanisch gebundenen cBN-Schleifscheiben. Ph.D. thesis, TU Dortmund University

  21. Marschalkowski K, Biermann D, Weinert K (2010) On the characteristics of high-performance internal traverse grinding using electroplated cbn wheels. In: Aoyama T, Takeuchi Y (eds) Proceedings of the 4th CIRP International Conference on High Performance Cutting (CIRP HPC 2010), vol. 1, pp 393–398

  22. de Payrebrune K (2013) Analyse und Modellierung der Prozess-Strukturwechselwirkungen beim Werkzeugschleifen. Dissertation, Institut für Maschinenelemente, Konstruktion und Fertigung, TU Bergakademie Freiberg University

  23. Poulachon G, Moisan A (2001) Performance evaluation on hardened steel-(pcbn) tool pair in high speed turning. In: Schulz H (ed) Scientific fundamentals of HSC. Carl Hanser Verlag, Munich, pp 161–171

    Google Scholar 

  24. Rausch S, Odendahl S, Kersting P, Biermann D, Zabel A (2012) Simulation-based prediction of process forces for grinding free-formed surfaces on machining centers. Proc CIRP 4:161–165. doi:10.1016/j.procir.2012.10.029

    Article  Google Scholar 

  25. Rausch S, Siebrecht T, Kersting P, Biermann D (2014) Analysis and simulation of surface topographies in grinding of thermally sprayed coatings. Adv Mater Res 1018:91–98. doi:10.4028/www.scientific.net/AMR.1018.91

    Article  Google Scholar 

  26. Salisbury E, Domala K, Moon K, Miller M, Sutherland J (2001) A three-dimensional model for the surface texture in surface grinding, Part 1: surface generation model. J Manuf Sci Eng Trans ASME 123(4):576–581. doi:10.1115/1.1391427

    Article  Google Scholar 

  27. Salisbury E, Domala K, Moon K, Miller M, Sutherland J (2001) A three-dimensional model for the surface texture in surface grinding, Part 2: grinding wheel surface texture model. J Manuf Sci Eng Trans ASME 123(4):582–590. doi:10.1115/1.1391428

    Article  Google Scholar 

  28. Schumann S, Holtermann R, Biermann D, Menzel A (2013) Hochleistungs-Innenrundschälschleifen: Thermomechanische Betrachtung in Abhängigkeit vom radialen Gesamtaufmaß. Diam Bus 11(2):36–43

    Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (DFG) in the context of SPP 1480 (Project IDs: ME 1745/7-3; BI 498/23-3) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Holtermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holtermann, R., Menzel, A., Schumann, S. et al. Modelling and simulation of Internal Traverse Grinding: bridging meso- and macro-scale simulations. Prod. Eng. Res. Devel. 9, 451–463 (2015). https://doi.org/10.1007/s11740-015-0613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-015-0613-z

Keywords

Mathematics Subject Classification

Navigation