Skip to main content
Log in

Reducing data loss within adaptive process chains in the context of commonly-used CAx systems

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

In many industries the focus in CAx based manufacturing has changed from fixed process chains to ones which can adapt to dynamic inputs. This way process chains can take measurement data into account to produce optimal results. Unfortunately, existing approaches do not integrate well with the existing CAx systems since they do not ensure that existing processes will be kept unchanged. This restriction leads to a low adaption rate in some industries. Especially in the aerospace industry every change in the manufacturing processes will result in high costs. In this paper it is shown that an extended function block approach can be integrated with existing CAx systems while allowing the modeling and controlling of adaptive process chains with reduced data loss at the same time. In order to achieve this goal, data port manifests are introduced which announce supported data formats and features of the corresponding function block. This extension reduces information loss at system interfaces and helps to ensure that required data will be transferred between function blocks. A case study will show how this extension can be used in a common CAx system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 3D Systems Inc. (1989) Stereolithography interface specification, Valencia, CA

  2. AdaM: Innovation Cluster AdaM. http://www.innovationscluster-adam.de/en.html (Cited 03 December 2014)

  3. Altmüller S, Bergs T, Börsch W, Jelich C, Klocke F, Kriegl B, Murtezaoglu Y, Siebenwurst C, Witty M (2011) Beherrschung adaptiver Prozessketten. Wettbewerbsfaktor Produktionstechnik, Aachener Perspektiven, Aachener Werkzeugmaschinen-Kolloquium, Shaker, Aachen, p 405–422

  4. Auerbach T, Bauhoff F, Beckers M, Behnen D, Brecher C, Brosze T, Buchholz G, Büscher C, Corves B, Eppelt U et al (2011) Selbstoptimierende Produktionssysteme. In: Brecher C (ed) Integrative Produktionstechnik für Hochlohnländer. VDI-Buch. Springer, Heidelberg, pp 747–1057

  5. Biermann D, Gausemeier J, Hess S, Petersen M, Wagner T (2013) Planning and optimisation of manufacturing process chains for functionally graded components–part 1: methodological foundations. Prod Eng 7(6):657–664

    Article  Google Scholar 

  6. Brecher C, Vitr M, Wolf J (2006) Closed-loop CAPP/CAM/CNC process chain based on STEP and STEP-NC inspection tasks. Int J Comput Integr Manuf 19(6):570–580

    Article  Google Scholar 

  7. Brecher C, Lohse W, Vitr M (2009) Module-based Platform for Seamless Interoperable CAD-CAM-CNC Planning. In: Advanced design and manufacturing based on STEP, Springer, p 439–462

  8. Denkena B, Behrens BA, Charlin F, Dannenberg M (2012) Integrative process chain optimization using a Genetic Algorithm. Prod Eng 6(1):29–37

    Article  Google Scholar 

  9. Denkena B, Lorenzen LE, Schmidt J (2012) Adaptive process planning. Prod Eng 6(1):55–67

    Article  Google Scholar 

  10. Haasis S (1995) Integrierte CAD-Anwendungen, Rationalisierungspotentiale und zukünftige Einsatzgebiete. Springer, Berlin

    Book  Google Scholar 

  11. Hehenberger P (2011) Computerunterstützte Fertigung, Eine kompakte Einführung. Springer, Berlin

    Book  Google Scholar 

  12. International Electrotechnical Commission (2005) IEC 61499–1: function blocks–part 1 architecture

  13. ISO 10303-21, industrial automation systems and integration—product data representation and exchange–Part 21: implementation methods: clear text encoding of the exchange structure. International Organization for Standardization (2002)

  14. ISO 14649-1, industrial automation systems and integration—physical device control—data model for computerized numerical controllers–part 1: overview and fundamental principles. International Organization for Standardization (2003)

  15. Klocke F, Bobek T, Holstein M, Kappmeyer G, Rossgoderer U, Schug P, Stautner M (2014) Durchgängigkeit von Datenflüssen und virtuelle Programmoptimierung. In: Integrative Produktion–Industrie 4.0, Aachener Perspektiven. Aachener Werkzeugmaschinen-Kolloquium, Shaker, Aachen, p 101–119

  16. Klocke F, Kuchle A (2011) Manufacturing processes 1: cutting. Springer, Berlin

    Book  Google Scholar 

  17. Laguionie R, Rauch M, Hascoët JY et al (2008) Toolpaths programming in an intelligent STEP-NC manufacturing context. J Mach Eng 8(1):33–43

    Google Scholar 

  18. Meinecke M (2009) Prozessauslegung zum fünfachsigen zirkularen Schruppfräsen von Titanlegierungen. Ph.D. Thesis, RWTH Aachen

  19. Piegl L, Tiller W (1997) The Nurbs book. Monograph in visual communication, vol 2. Springer, Berlin

    Book  Google Scholar 

  20. Qi H, Azer M, Singh P (2010) Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. Int J Adv Manuf Technol 48(1–4):121–131

    Article  Google Scholar 

  21. Rauch M, Laguionie R, Hascoët JY, Xu XW et al (2009) Enhancing CNC manufacturing interoperability with STEP-NC. J Mach Eng 9(4):26–37

    Google Scholar 

  22. Rauch M, Laguionie R, Hascoet JY, Suh SH (2012) An advanced STEP-NC controller for intelligent machining processes. Robot Comput Integr Manuf 28(3):375–384

    Article  Google Scholar 

  23. Sendler U (2013) Industrie 4.0–Beherrschung der industriellen Komplexität mit SysLM (Systems Lifecycle Management). In: Industrie 4.0, Beherrschung der industriellen Komplexität mit SysLM. Xpert.press. Springer, Heidelberg, pp 1–19

  24. Shah J, Sreevalsan P, Mathew A (1991) Survey of CAD/feature-based process planning and NC programming techniques. Computer-Aided Eng J 8(1):25–33

    Article  Google Scholar 

  25. Shen W, Wang L, Hao Q (2006) Agent-based distributed manufacturing process planning and scheduling: a state-of-the-art survey. Syst Man Cybern Part C Applic Rev IEEE Trans 36(4):563–577

    Article  Google Scholar 

  26. Siemens PLM Software: NX: Siemens PLM Software. http://www.plm.automation.siemens.com/products/nx/ (Cited 03 December 2014)

  27. Spöcker G, Bobek T, Glasmacher L, Klocke F (2014) Towards a Cax-Framework for Adaptive Programming Using Generic Process Blocks for Manufacturing. In: New production technologies in aerospace industry. Proceedings of the 4th machining innovations conference, Hannover, September 2013. Lecture notes in production engineering. Springer, pp 153–162

  28. Toyserkani E, Khajepour A, Corbin SF (2010) Laser cladding. CRC Press, Boca Raton

    Google Scholar 

  29. Wang H, Xu X, Tedford JD (2007) An adaptable CNC system based on STEP-NC and function blocks. Int J Prod Res 45(17):3809–3829

    Article  Google Scholar 

  30. Wang L, Keshavarzmanesh S, Feng HY (2008) Design of adaptive function blocks for dynamic assembly planning and control. J Manuf Syst 27(1):45–51

    Article  Google Scholar 

  31. Wang L, Adamson G, Holm M, Moore P (2012) A review of function blocks for process planning and control of manufacturing equipment. J Manuf Syst 31(3):269–279

    Article  Google Scholar 

  32. Wang XV, Xu XW (2012) DIMP: an interoperable solution for software integration and product data exchange. Enterp Inf Syst 6(3):291–314

    Article  Google Scholar 

  33. Xia F, Wang Z, Sun Y (2003) Function block based design pattern for flexible manufacturing control system. In: Systems, Man and Cybernetics, 2003. IEEE International Conference on, vol. 5. IEEE, p 4922–4927

  34. Xu Y, Brennan RW, Zhang X, Norrie DH (2002) A reconfigurable concurrent function block model and its implementation in real-time Java. Integr Computer-Aided Eng 9(3):263–279

    Google Scholar 

  35. Xu X, Wang L, Newman ST (2011) Computer-aided process planning—a critical review of recent developments and future trends. Int J Comput Integr Manuf 24(1):1–31

    Article  Google Scholar 

  36. Yao S, Han X, Yang Y, Rong YK, Huang S, Yen D, Zhang G (2007) Computer-aided manufacturing planning for mass customization: part 1, framework. Int J Adv Manuf Technol 32(1–2):194–204

    Article  Google Scholar 

  37. Zhang Y, Feng SC, Wang X, Tian W, Wu R (1999) Object oriented manufacturing resource modelling for adaptive process planning. Int J Prod Res 37(18):4179–4195

    Article  MATH  Google Scholar 

  38. Zhao F (1999) A cooperative framework for process planning. Int J Comput Integr Manuf 12(2):168–178

    Article  Google Scholar 

  39. Zhao YF, Xu X (2010) Enabling cognitive manufacturing through automated on-machine measurement planning and feedback. Adv Eng Inform 24(3):269–284

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the state government of North Rhine Westphalia and the Fraunhofer Gesellschaft frangewandte Forschung e.V., who provided the financial support of the work presented here in the innovation clusters “Turpro” and “AdaM” (contract number PRO/0042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Spöcker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klocke, F., Spöcker, G., Huwer, T. et al. Reducing data loss within adaptive process chains in the context of commonly-used CAx systems. Prod. Eng. Res. Devel. 9, 307–316 (2015). https://doi.org/10.1007/s11740-015-0616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-015-0616-9

Keywords

Navigation