Skip to main content
Log in

Cycle management of manufacturing resources: identification and prioritization of investment needs

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

A novel lifecycle framework for managing manufacturing resources within a company is presented to support the timely, systematic identification of technological need for action. In contrast to the established bathtub curve, the equipments’ age, maintenance costs, downtimes, and technical condition are considered quantitatively taking uncertainties into account. The developed methodology therefore comprises contingency analysis and applies a dynamic set of fuzzy rules for classifying the cycle-stage of multiple manufacturing resources. Integrating these functionalities within one holistic framework, this approach far exceeds existing methods for proactively managing the manufacturing resource lifecycle. Cooperating with one of the leading manufacturer of commercial vehicles, a database comprising 221 relevant manufacturing resource datasets was built as a foundation for statistical analysis. Besides offering general recommendations facilitating a proactive management approach, the developed lifecycle model concentrates further activities on elements that show major improvement potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schuh G, Graw M, Schön N (2014) Exploitation-oriented manufacturing technology development. Proc CIRP 17:680–685. doi:10.1016/j.procir.2014.02.026

    Article  Google Scholar 

  2. Klocke F, Buchholz S, Stauder J (2014) Technology chain optimization: a systematic approach considering the manufacturing history. Prod Eng Res Dev 8(5):669–678. doi:10.1007/s11740-014-0572-9

    Article  Google Scholar 

  3. Reinhart G, Schindler S (2012) Strategic evaluation of technology chains for producing companies. In: Elmaraghy HA (ed) Enabling manufacturing competitiveness and economic sustainability. Springer, Berlin, pp 391–396

    Chapter  Google Scholar 

  4. Reinhart G, Schindler S (2010) A strategic evaluation approach for defining the maturity of manufacturing technologies. World Acad Sci Eng Technol 71(6):920–925

    Google Scholar 

  5. DIN 8580 (2003) Fertigungsverfahren-Begriffe, Einteilung. Beuth, Berlin

  6. Zäh MF, Reinhart G, Pohl J, Schindler S, Karl F, Rimpau C (2009) Modelling, anticipating and managing cyclic behaviour in industry. In: Zäh MF (ed) 3rd international conference on changeable, agile, reconfigurable and virtual production (CARV 2009). Utz, München, pp 16–43

  7. Zaeh MF, Reinhart G, Karl F, Schindler S, Pohl J, Rimpau C (2010) Cyclic influences within the production resource planning process. Prod Eng Res Dev 4(4):309–317. doi:10.1007/s11740-010-0254-1

    Article  Google Scholar 

  8. Koch J, Plehn C, Reinhart G, Zäh MF (2014) Cycle management for continuous manufacturing planning. In: Zaeh MF (ed) Enabling manufacturing competitiveness and economic sustainability. Springer International Publishing, Cham, pp 9–12. doi:10.1007/978-3-319-02054-9_2

  9. Schönmann A, Greitemann J, Reinhart G (2016) Proactive management of production technologies: a conceptual framework. Proc CIRP 52:198–203. doi:10.1016/j.procir.2016.08.011

    Article  Google Scholar 

  10. Khan F (2001) Equipment reliability: a life-cycle approach. Eng Manag J 11(3):127. doi:10.1049/em:20010309

    Article  MathSciNet  Google Scholar 

  11. El-Akruti K, Dwight R, Zhang T (2013) The strategic role of engineering asset management. Int J Prod Econ 146(1):227–239. doi:10.1016/j.ijpe.2013.07.002

    Article  Google Scholar 

  12. Greitemann J, Stahl B, Schönmann A, Lohmann B, Reinhart G (2015) Strategic production technology planning using a dynamic technology chain calendar. Prod Eng Res Dev 9(3):417–424. doi:10.1007/s11740-015-0617-8

    Article  Google Scholar 

  13. Phaal R, Farrukh CJ, Probert DR (2004) Technology roadmapping—a planning framework for evolution and revolution. Technol Forecast Soc Change 71(1–2):5–26. doi:10.1016/S0040-1625(03)00072-6

    Article  Google Scholar 

  14. Heeschen D (2015) Kennzahlenbasierte Auswahl der Fertigungstechnologien und -ressourcen im industriellen Werkzeugbau. Doctoral dissertation RWTH Aachen, Apprimus, Aachen

  15. Klocke F, Fallböhmer M, Kopner A, Trommer G (2000) Methods and tools supporting modular process design. Robotics Comput Integr Manuf 16(6):411–423

    Article  Google Scholar 

  16. Biermann D, Gausemeier J, Hess S, Petersen M, Wagner T (2013) Planning and optimisation of manufacturing process chains for functionally graded components–part 1: methodological foundations. Prod Eng Res Dev 7(6):657–664. doi:10.1007/s11740-013-0490-2

    Article  Google Scholar 

  17. Klocke F, Arntz K, Heeschen D (2015) Integrative technology chain design for small scale manufacturers. Prod Eng Res Dev 9(1):109–117. doi:10.1007/s11740-014-0590-7

    Article  Google Scholar 

  18. Dekker R (1996) Applications of maintenance optimization models: a review and analysis. Reliab Eng Syst Saf 51(3):229–240. doi:10.1016/0951-8320(95)00076-3

    Article  Google Scholar 

  19. Chang PT (2005) Fuzzy strategic replacement analysis. Eur J Oper Res 160(2):532–559. doi:10.1016/j.ejor.2003.07.001

    Article  MathSciNet  MATH  Google Scholar 

  20. Si XS, Wang W, Hu CH, Zhou DH (2011) Remaining useful life estimation—a review on the statistical data driven approaches. Eur J Oper Res 213(1):1–14. doi:10.1016/j.ejor.2010.11.018

    Article  MathSciNet  Google Scholar 

  21. Heng A, Zhang S, Tan AC, Mathew J (2009) Rotating machinery prognostics: state of the art, challenges and opportunities. Mech Syst Signal Process 23(3):724–739. doi:10.1016/j.ymssp.2008.06.009

    Article  Google Scholar 

  22. Jardine AK, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20(7):1483–1510. doi:10.1016/j.ymssp.2005.09.012

    Article  Google Scholar 

  23. Balzer G, Drescher D, Meister R, Heil F, Kirschek P, Neumann C (2004) Evaluation of failure data of hv circuit-breakers for condition based maintenance. In: Proceedings of CIGRE (A3-305)

  24. Bertsche B, Lechner G (2004) Zuverlässigkeit im Fahrzeug- und Maschinenbau: Ermittlung von Bauteil- und System-Zuverlässigkeiten. VDI. Springer, Berlin

    Google Scholar 

  25. Moubray J (1997) Reliability-centered maintenance, 2nd edn. Industrial Press, New York

    Google Scholar 

  26. Smith AM, Hinchcliffe GR (2006) Beware of the fallacy of the bathtub curve. Plant Eng 60(1):35–37

    Google Scholar 

  27. Smith DJ (2011) Reliability, maintainability and risk: practical methods for engineers including reliability centred maintenance and safety-related systems. Elsevier Science, Burlington

    Google Scholar 

  28. Haan BD (2008) A simple classification approach to build a bathtub. In: Annual reliability and maintainability symposium, pp 206–211. doi:10.1109/RAMS.2008.4925796

  29. Pohl J (2014) Adaption von Produktionsstrukturen unter Berücksichtigung von Lebenszyklen. Doctoral dissertation Technical University of Munich, Utz, München

  30. Karl F, Reinhart G, Zaeh MF (2012) Strategic planning of reconfigurations on manufacturing resources. Proc CIRP 3:608–613

    Article  Google Scholar 

  31. Frutuoso e Melo PF, Alvim A, Noriega HC, Nunes ME, Oliveira EA, Simone EA, Saldanha PL (1999) On probability models for the unavailability analysis of safety systems under aging phenomena. Nuclear Energy 35(3–4):333–366. doi:10.1016/S0149-1970(99)00021-9

    Article  Google Scholar 

  32. Blanks HS (1998) The challenge of quantitative reliability. Qual Reliab Eng Int 14(3):167–176

    Article  Google Scholar 

  33. Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353. doi:10.1016/s0019-9958(65)90241-x

    Article  MathSciNet  MATH  Google Scholar 

  34. Ishibuchi H, Nozaki K, Tanaka H (1992) Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets Syst 52(1):21–32. doi:10.1016/0165-0114(92)90032-y

    Article  Google Scholar 

  35. Lee C (1990) Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Trans Syst Man Cybern 20(2):419–435. doi:10.1109/21.52552

    Article  MathSciNet  MATH  Google Scholar 

  36. Kruse R, Borgelt C, Klawonn F, Moewes C, Ruß G, Steinbrecher M (2011) Computational Intelligence, Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen. Fuzzy-Systeme und Bayes-Netze. Vieweg + Teubner, Wiesbaden

  37. Assis EM, Borges EP, de Melo Vieira, Silvio AB, Schnitman L (2015) Modeling failure rate of a robotic welding station using generalized q-distributions. Int J Qual Reliab Manag 32(2):156–166. doi:10.1108/IJQRM-11-2012-0151

    Article  Google Scholar 

  38. Yazhou J, Molin W, Zhixin J (1995) Probability distribution of machining center failures. Reliab Eng Syst Saf 50(1):121–125. doi:10.1016/0951-8320(95)00070-I

    Article  Google Scholar 

  39. Wang Y, Jia Y, Jiang W (2001) Early failure analysis of machining centers: a case study. Reliab Eng Syst Saf 72(1):91–97. doi:10.1016/S0951-8320(00)00100-9

    Article  Google Scholar 

  40. Ghitany ME (2004) The monotonicity of the reliabilitymeasures of the beta distribution. Appl Math Lett 17(11):1277–1283. doi:10.1016/j.aml.2003.12.007

    Article  MathSciNet  MATH  Google Scholar 

  41. Jeong Y, Park I, Yoon B (2016) Forecasting technology substitution based on hazard function. Technol Forecast Soc Change 104:259–272. doi:10.1016/j.techfore.2016.01.014

    Article  Google Scholar 

  42. Härdle W, Klinke S, Rönz B (2015) Introduction to statistics. Springer, Cham

    Book  MATH  Google Scholar 

  43. Chambers JM (1983) Graphical methods for data analysis. Wadsworth International Group and Duxbury Press, Belmont

    MATH  Google Scholar 

  44. Massey FJ (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68. doi:10.2307/2280095

    Article  MATH  Google Scholar 

  45. Snedecor GW, Cochran WG (1989) Statistical methods. The Iowa State University Press, Ames

    MATH  Google Scholar 

  46. Lai CD (2014) Weibull distribution. In: Lai CD (ed) Generalized Weibull distributions, Springer Briefs in Statistics. Springer, Berlin, pp 1–21. doi:10.1007/978-3-642-39106-4_1

  47. Ryll F, Freund C (2010) Grundlagen der instandhaltung. In: Schenk M (ed) Instandhaltung technischer Systeme. Springer, Heidelberg, pp 23–101

    Chapter  Google Scholar 

  48. Biedermann H (1990) Anlagenmanagement. TÜV Rheinland, Köln, Schriftenreihe Erfolgspotentiale für Unternehmer und Führungskräfte, Verl

Download references

Acknowledgements

The German Research Foundation (DFG) funds this research and development project. We extend our sincere thanks to the DFG for its generous support of the work described in this paper, resulting from the subprojects A7 and T2 within the framework of the Collaborative Research Centre 768 “Managing cycles in innovation processes - Integrated development of product service systems based on technical products”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schönmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schönmann, A., Dengler, C., Intra, C. et al. Cycle management of manufacturing resources: identification and prioritization of investment needs. Prod. Eng. Res. Devel. 11, 51–60 (2017). https://doi.org/10.1007/s11740-017-0713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0713-z

Keywords

Navigation