Skip to main content
Log in

Study of the kinetic and energetic reaction properties of multilayered aluminum–nickel nanofoils

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 12 June 2017

Abstract

Manufacturers are facing the demand to produce resource efficient electromobiles. This is a challenging task as the heavy traction battery significantly increases the overall mass of the vehicle. Using light-weight components is an engineering strategy to improve the power-to-mass ratio. The current trend is to produce components consisting of dissimilar materials. Joining by using reactive nanofoils is a promising technique to produce components in a multi-material design. However, the reaction characteristics during joining must be known to enable an industrial application. Therefore, this study addresses the analysis of the kinetic and energetic reaction properties of commercially available aluminum–nickel nanofoils with different layer structures. An experimental setup based on a monochromatic high-speed camera and a test device was applied to evaluate the shape and the velocity of the propagating combustion front during the reaction process. A combustion calorimeter was used to determine the reaction enthalpy. Existing analytical models to predict kinetic and energetic reaction properties of multilayered foils were reviewed using the experimental findings. A pre-exponential factor was determined empirically to account for nanofoils with individual foil thicknesses. Finally, the kinetic and energetic properties of commercially available nanofoils were predicted with a high degree of accuracy by using the analytical models in combination with the pre-exponential factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McKinsey (2014) Electric vehicles in Europe: gearing up for a new phase? http://www.mckinsey.com/~/media/McKinsey%20Offices/Netherlands/Latest%20thinking/PDFs/Electric-Vehicle-Report-EN_AS%20FINAL.ashx. Accessed 21 Feb 2017

  2. Steiger W (2014) Future mobility. Volkswagen Group’s solutions for sustainable mobility. In: Barclays Future Powertrain Symposium, 4 July 2014, London, UK

  3. Klein B (2011) Leichtbau-Konstruktion. Berechnungsgrundlagen und Gestaltung. Vieweg and Teubner, Wiesbaden

    Book  Google Scholar 

  4. Stock JW, Zaeh MF (2013) Cutting and joining of carbon fibre reinforced plastics. In: European automotive laser applications, 20 February 2013, Bad Nauheim, Germany

  5. Krubasik EG (1982) Strategische Waffe. Wirtschaftswoche 36(25):28–33

    Google Scholar 

  6. Ma E, Thompson CV, Clevenger LA, Tu KN (1990) Self-propagating explosive reactions in Al/Ni multilayer thin films. Appl Phys Lett 57(12):1262. doi:10.1063/1.103504

    Article  Google Scholar 

  7. Merzhanov AG (1995) History and recent developments in SHS. Ceram Int 21(5):371–379. doi:10.1016/0272-8842(95)96211-7

    Article  Google Scholar 

  8. Swiston AJ, Hufnagel TC, Weihs TP (2003) Joining bulk metallic glass using reactive multilayer foils. Scr Mater 48(12):1575–1580. doi:10.1016/S1359-6462(03)00164-7

    Article  Google Scholar 

  9. Grieseler R, Welker T, Mueller J, Schaaf P (2012) Bonding of low temperature co-fired ceramics to copper and to ceramic blocks by reactive aluminum/nickel multilayers. Phys Status Solidi A 209(3):512–518. doi:10.1002/pssa.201127470

    Article  Google Scholar 

  10. Theodossiadis GD, Zaeh MF (2014) Fuegen von Metall und Kunststoff mittels reaktiver Nanofolien. In: DVS—Wissenschaftliche Tagung, 19 November 2014, Munich, Germany

  11. Weihs TP (2014) Fabrication and characterization of reactive multilayer films and foils. In: Barmak K, Coffrey K (eds) Metallic films for electronic, optical and magnetic applications, 1st edn. Woodhead Publishing, Cambridge, pp 160–243

    Chapter  Google Scholar 

  12. Rogachev AS, Mukasyan AS (2014) Combustion for material synthesis. Taylor and Francis, Hoboken

    Google Scholar 

  13. Adams DP (2015) Reactive multilayers fabricated by vapor deposition: a critical review. Thin Solid Films 576:98–128. doi:10.1016/j.tsf.2014.09.042

    Article  Google Scholar 

  14. Gavens AJ, van Heerden D, Mann AB, Reiss ME, Weihs TP (2000) Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J Appl Phys 87:1255–1263. doi:10.1063/1.372005

    Article  Google Scholar 

  15. Fritz GM, Spey SJ, Grapes MD, Weihs TP (2013) Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy. J Appl Phys 113:14901. doi:10.1063/1.4770478

    Article  Google Scholar 

  16. Picard YN, Adams DP, Palmer JA, Yalisove SM (2006) Pulsed laser ignition of reactive multilayer films. Appl Phys Lett 88:144102. doi:10.1063/1.2191952

    Article  Google Scholar 

  17. Rogachev AS, Baras F (2007) Models of SHS. An overview. Int J Self Propag High Temp Synth 16(3):141–153. doi:10.3103/S1061386207030077

    Article  Google Scholar 

  18. Pretorius R, de Reus R, Vredenberg AM, Saris FW (1990) Use of the effective heat of formation rule for predicting phase formation sequence in Al–Ni systems. Mater Lett 9:494–499. doi:10.1016/0167-577X(90)90094-3

    Article  Google Scholar 

  19. Mukasyan AS, Rogachev AS (2008) Discrete reaction waves: gasless combustion of solid powder mixtures. Prog Energy Combust Sci 34:377–416. doi:10.1016/j.pecs.2007.09.002

    Article  Google Scholar 

  20. Gunduz IE, Kyriakou A, Vlachos N, Kyratsi T, Doumanidis CC, Son S, Rebholz C (2014) Spark ignitable Ni–Al ball-milled powders for bonding applications. Surf Coat Technol 260:396–400. doi:10.1016/j.surfcoat.2014.06.068

    Article  Google Scholar 

  21. Hadjiafxenti A, Gunduz IE, Tsotsos C, Kyratsi T, Aouadi SM, Doumanidis CC, Rebholz C (2010) The influence of structure on thermal behavior of reactive Al–Ni powder mixtures formed by ball milling. J Alloys Compd 505:467–471. doi:10.1016/j.jallcom.2010.03.250

    Article  Google Scholar 

  22. Stover AK, Krywopusk NM, Fritz GM, Barron SC, Gibbins JD, Weihs TP (2013) An analysis of the microstructure and properties of cold-rolled Ni:Al laminate foils. J Mater Sci 48:5917–5929. doi:10.1007/s10853-013-7387-5

    Article  Google Scholar 

  23. Zhu P, Li J, Liu CT (1997) Combustion reaction in multilayered nickel and aluminum foils. Mater Sci Eng A 239–240:532–539. doi:10.1016/S0921-5093(97)00627-8

    Article  Google Scholar 

  24. Edelstein AS, Everett RK, Richardson GR, Qadri SB, Foley JC, Perepezko JH (1995) Reaction kinetics and biasing in Al/Ni multilayers. Mater Sci Eng A 195:13–19. doi:10.1016/0921-5093(94)06501-2

    Article  Google Scholar 

  25. Gunduz IE, Fadenberger K, Kokonou M, Rebholz C, Doumanidis CC (2008) Investigations on the self propagating reactions of nickel and aluminum multilayered foils. Appl Phys Lett 93:134101. doi:10.1063/1.2994670

    Article  Google Scholar 

  26. Knepper R, Snyder MR, Fritz G, Fisher K, Knio OM, Weihs TP (2009) Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers. J Appl Phys 105:83504. doi:10.1063/1.3087490

    Article  Google Scholar 

  27. Michaelsen C, Barmak K, Weihs TP (1997) Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry. J Phys D Appl Phys 30:3167–3186. doi:10.1088/0022-3727/30/23/001

    Article  Google Scholar 

  28. Barmak K, Michaelsen C, Lucadamo G (1997) Reactive phase formation in sputter-deposited Ni/Al multilayer thin films. J Mater Res 12:133–146. doi:10.1557/JMR.1997.0021

    Article  Google Scholar 

  29. Dyer TS, Munir ZA (1995) The synthesis of nickel aluminides by multilayer self-propagating combustion. Metall Mater Trans B 26:603–610. doi:10.1007/BF02653881

    Article  Google Scholar 

  30. Fadenberger K, Gunduz IE, Tsotsos C, Kokonou M, Gravani S, Brandstetter S, Bergamaschi A, Schmitt B, Mayrhofer PH, Doumanidis CC, Rebholz C (2010) In situ observation of rapid reactions in nanoscale Ni–Al multilayer foils using synchrotron radiation. Appl Phys Lett 97:144101. doi:10.1063/1.3485673

    Article  Google Scholar 

  31. Heintze J (2016) Lehrbuch zur Experimentalphysik Band 2: Kontinuumsmechanik und Thermodynamik. Springer Spektrum, Berlin

    Book  Google Scholar 

  32. Armstrong R, Koszykowski M (1990) Combustion theory for sandwiches of alloyable materials. In: Munir ZA, Holt JB (eds) Combustion in plasma synthesis of high-temperature materials, 1st edn. VCH, New York, pp 88–99

    Google Scholar 

Download references

Acknowledgements

The authors thank the German Federal Ministry of Education and Research (BMBF) for funding this work as part of the research project “eProduction” (project number 16N12033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios D. Theodossiadis.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11740-017-0745-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theodossiadis, G.D., Zaeh, M.F. Study of the kinetic and energetic reaction properties of multilayered aluminum–nickel nanofoils. Prod. Eng. Res. Devel. 11, 245–253 (2017). https://doi.org/10.1007/s11740-017-0733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0733-8

Keywords

Navigation