
Vol.:(0123456789)1 3

Prod. Eng. Res. Devel. (2017) 11:687–694 
DOI 10.1007/s11740-017-0765-0

COMPUTER AIDED ENGINEERING

Towards the co-evolution of industrial products and its 
production systems by combining models from development 
and hardware/software deployment in cyber-physical systems

Birgit Vogel‑Heuser1   · Stefan Wildermann2 · Jürgen Teich2 

Received: 10 April 2017 / Accepted: 13 September 2017 / Published online: 24 October 2017 
© The Author(s) 2017. This article is an open access publication

Keywords  Model-based engineering · Automated 
production systems (aPS) · Multicore deployment · Cyber-
physical systems (CPS) · Cyber-physical production 
systems (CPPS)

1  Introduction

Current trends for industrially made products like small lot 
sizes and mass-customized products result in a divergence 
of the life cycles of industrial production systems and the 
products they produce. Whereas automated production sys-
tems (aPS) represent big investments and therefore have 
to be operated for several decades, industrial products are 
evolving much faster and innovations or changing customer 
requirements may occur even on a daily basis [1]. In order to 
cope with this divergence, aPS need to be flexible and able 
to co-evolve with innovations or changes of the products 
they produce [2]. On the other hand, “aPS are comprised of 
mechanical parts, electrical and electronic parts (automa-
tion hardware) and software, all closely interwoven. They 
represent a special class of mechatronic systems and con-
sist of mechatronic sub-systems like sensors and actuators” 
[2]. Consequently, it is also necessary that aPS co-evolve by 
changes of its parts and sub-systems. In order to cope with 
these co-evolutions, two concepts lately have had a signifi-
cant impact: model-based systems engineering (MBSE) and 
cyber-physical systems (CPS) for administrating physical 
entities (products as well as electronic components of aPS 
like sensors) during their lifetime. Whereas model-based 
evolution of CPS has already been investigated for differ-
ent applications, sufficient approaches for the co-evolution 
of industrial products and aPS have not been presented yet. 
The envisioned goal of the work presented in this paper 
are advanced methodologies and techniques to support 

Abstract  Industrial production systems and industrially 
manufactured products are constantly evolving due to techni-
cal innovations and customers’ demands. Therefore, ensur-
ing an optimized co-evolution of both becomes an important 
yet challenging task. Approaches for model-based systems 
engineering have been widely investigated and have already 
had significant impact on industrial practice. However, exist-
ing model-based approaches mostly are focusing on par-
ticular aspects of a production system and do not provide 
a holistic approach for optimizing automated production 
systems, their deployment, and their co-evolution with the 
product. As a first step towards this direction, this contribu-
tion proposes the combination of an engineering approach 
for aPS based on systems modeling language with models 
and techniques for deployment of software and hardware to 
cyber-physical system architectures, which have been inves-
tigated in the field of computer science, and motivates the 
possibilities of a combined approach.

 *	 Birgit Vogel‑Heuser 
	 vogel‑heuser@tum.de

 *	 Stefan Wildermann 
	 stefan.wildermann@fau.de

	 Jürgen Teich 
	 juergen.teich@fau.de

1	 Automation and Information Systems (AIS), Technical 
University of Munich (TUM), Garching near Munich, 
Germany

2	 Department of Computer Science, Friedrich-Alexander- 
Universität Erlangen-Nürnberg (FAU), Cauerstrasse 11, 
91056 Erlangen, Germany

http://orcid.org/0000-0003-2785-8819
http://crossmark.crossref.org/dialog/?doi=10.1007/s11740-017-0765-0&domain=pdf


688	 Prod. Eng. Res. Devel. (2017) 11:687–694

1 3

the co-evolution of models describing industrial products 
as instances of CPS as well as models describing aPS as 
instances of cyber physical production systems (CPPS). In 
the application example the product is a fluid that will be 
bottled later and referred to as a CPS with an RFID storing 
all relevant information and enabling tracking of the product 
and availability of the information in the cloud. One of the 
main intends of this co-evolution is to enable in future to 
co-optimize the CPS as well as CPPS during all phases of 
their interlinked life cycles for resource efficiency.

Taking a first step towards this goal, this paper presents 
an approach for MBSE based on systems modeling language 
(SysML) (e.g., [6, 8, 10]). This approach intends to enable an 
optimized deployment of a production system’s automation 
software to automation hardware resources taking the co-
evolution of the products to be produced into account. This 
deployment represents a substantial part of a CPPS’s model 
that has not been sufficiently addressed in existing works on 
production automation. Common optimization goals within 
the deployment of software to hardware are (a) even distri-
butions of the computing loads under (b) consideration of 
the real-time requirements of a particular application while 
(c) minimizing heat generation to decrease the aging/wear of 
the hardware resources. In order to realize such an approach, 
this paper presents the previous advances of the authors’ 
groups and provides an outlook on a combined approach. 
In particular, the authors’ works towards the model-based 
development of aPS [4] are discussed in combination with 
the works towards the model-based code deployment to het-
erogeneous cyber-physical system architectures [5] and a 
combined approach is outlined. The remainder of the paper 
is structured as follows: in Sect. 2, related work in the area 
of model-based development of CPPS automation level and 
model-based approaches for hardware/software co-design 
of electronic CPSs will be discussed. After the instance of 
a CPPS is introduced in Sect. 3, prior works in MBSE and 
software deployment is subsumed in Sects. 4 and 5. An inte-
gration of the two groups’ approaches is motivated in Sect. 6 
and evaluated in Sect. 7. Section 8 concludes this paper.

2 � Related work

First, existing model-based approaches for CPPS automation 
level, are given and, second, model-based approaches for 
optimization and code deployment on heterogeneous CPS 
architectures are discussed.

2.1 � Model‑based development of flexible automated 
production systems

The increasing complexity of modern industrial aPS and 
their development and optimization during their whole 

lifecycle has led to MBSE as a possible solution for han-
dling this complexity. Backhaus et al. [21] introduce an 
approach based on digital production process models aim-
ing to shorten the engineering process, e.g. when adapting 
plants to new products and requirements. An approach for 
the systematic model-based development of production 
automation systems has been proposed by Vepsäläinen 
et al. [5] with AUKOTON. This approach covers several 
aspects of an automation system but lacks methods to 
integrate user-defined control logic [3, 6]. Possibilities to 
explicitly specify information for automatic deployment 
of Function Blocks onto controllers with respect to mul-
tiple optimization objectives (cost, latency, load distribu-
tion, and heat generation) are missing too. Reuter et al. 
[7] present an approach to integrate sub-models for con-
trol configurations in MBSE tools to improve the inter-
disciplinary modeling of manufacturing systems during 
development phase. Other SysML-based approaches [8, 
10] provide the modeling of (non-functional) requirements 
and the application of simulations for design validation. 
However, in contrast to the work in [3] these approaches 
do not provide a direct integration with automation sys-
tem software. The same holds for Thramboulidis et al. [9] 
which are also based on SysML and provide the modeling 
of domain-specific components along with their functional 
and non-functional requirements but lack a sufficient cou-
pling between the functional models and run-time environ-
ments. The approaches [10, 11] of Fantuzzi et al. are also 
based on SysML as well as on Unified Modeling Language 
(UML) intend to describe the different aspects of aPS and 
mechatronic systems in general. In [11], design patterns 
for the generation of aPS’ software are presented still lack-
ing a close integration between the modeled behavior and 
executed code on the target platform as in [3]. Estevez 
includes models from various domains in the development 
of aPS using XML schemes [12, 13] but lack an optimized 
deployment of the functionality onto controllers. Brecher 
et al. introduce an approach for developing a control logic 
based on a SysML model [14], including component 
behavior models integrated in the overall system model. 
The approach addresses the reuse of the behavior models 
for the development of system modifications using control 
agents. A promising approach in the domain of building 
automation is [15], hence, a coupling between product and 
production system models is not considered. Whereas the 
aforementioned approaches mainly focused on automation 
systems based on the IEC 61131 standard, other works 
which address event-driven implementations conform-
ing to the IEC 61499 standard [16, 17] exist but have not 
been widely accepted in industry, yet. To describe auto-
mation hardware devices, several languages like EDDL 
and FDT [18] for describing field devices and networked 
architecture systems in a detailed way exist. The approach 



689Prod. Eng. Res. Devel. (2017) 11:687–694	

1 3

motivated in this paper may be extended by these descrip-
tions to address a domain-specific hardware modeling.

2.2 � Model‑based deployment for heterogeneous CPS 
platforms

The task of hardware/software co-design is to concurrently 
design hardware and software components of complex elec-
tronic systems [19]. It exploits the synergy of hardware and 
software with the goal to optimize/satisfy design objectives 
and constraints such as cost, latency, and power consump-
tion. The major design decisions are made on the electronic 
system level (ESL), where it is decided whether system tasks 
are implemented in software or hardware, how the system 
architecture is built (allocation), and on which core each 
software module is executed (deployment/binding) by con-
sidering multiple objectives and constraints. This optimi-
zation problem is generally NP-complete [20]. Therefore, 
various techniques for automatized ESL design have been 
proposed in the literature, see [19] for a survey. A survey 
of techniques that are tailored to application mapping onto 
multi-core architectures is given in [22]. The technique for 
ESL design that we present in Sect. 5 basically adheres to 
techniques presented in these surveys.

Thermal conditions of computing hardware in aPS as an 
instance of a CPPS are greatly affected by thermal condi-
tions emerging from the production process. Consequently, 
influences coming from a production process need to be 
considered inside a CPPS’s model in order to achieve fea-
sible, temperature-aware, and optimal (resource-efficient) 
deployments. In case of innovations or changes which 
cause evolutions inside a CPS’s model, also the model of 
the corresponding CPPS can be co-evolved eventually by 
re-optimizing the deployment of its automation software. 
Karl and Reinhart [23] introduce a methodology to update 
existing production systems based on new requirements. 
After comparing the new requirements to the system capa-
bilities, alternative matching system reconfigurations are 
created, selecting the reconfiguration with the lowest adap-
tion complexity and expenses. The approach, concentrates 
on mechanical system components and their interdependen-
cies rather than CPPSs. Consequently, in this paper, we show 
how techniques need to be adapted and extended for using 
them for the design of complex CPPSs.

3 � Application example

In order to provide a comprehensive model example of one 
aPS embedded in one production system out of a CPPS 
network which co-evolves with its produced product, a 
lab size part of an aPS is introduced. The plant section 
provides a tank in which the fluid is heat-treated with an 

endothermal chemical reaction (Fig. 1a), a heating element 
providing the thermal energy (Fig. 1b) and a temperature 
sensor (Fig. 1c) to measure the fluid’s temperature.

The temperature of the fluid needs to be controlled by 
a closed-loop controller (TC Fig. 1d) and visualized for 
the operator (TI).

To implement these tasks, a network of different com-
puting resources is available: the temperature sensor 
as well as the heating element represent an automation 
node with one or more micro controllers and a field bus 
interface and thereby providing (limited) computational 
resources. The control loop is implemented in software 
on a Programmable Logic Controller (PLC) with a single-
core processor and a fieldbus interface.

Constraints on the deployment of the compute tasks 
arise from the limitations of the computation resources 
and data transmission rate of the field bus but also from 
the environmental constraints like heat. Whereas the PLC 
is housed inside a temperature-controlled control cabinet, 
the temperature sensor and heating element are directly 
exposed to the thermal conditions of the fluid (product). 
In order to minimize the wear inside the automation 
equipment and thus, expand its sustainable lifetime, an 
optimized solution for the deployment of the tasks to the 
automation hardware needs to be developed that also sat-
isfies the given real-time requirements of the production 
process.

As evolution step of the product, i.e. the fluid, an 
increased temperature in the production process is 
assumed. To adapt to this changed and higher tempera-
ture requirements the automation hardware including the 
controllers need to evolve in accordance. In case of net-
worked production facilities which need to produce the 
same product in a similar plant the evolution steps can be 
used immediately due to communication and information 
exchange in between both.

Fig. 1   Specification of Process and Instrumentation according to ISO 
3511 [29]



690	 Prod. Eng. Res. Devel. (2017) 11:687–694

1 3

4 � Model‑based development of aPS

For the model-based development of industrial aPS an 
SysML-based approach will be introduced for the applica-
tion example [3] which particularly targets the design of 
networked aPS. The approach is based on a design procedure 
with multiple stages: based on the product specification at 
first the requirements of the production process are derived 
and modelled using the SysML requirements diagram (cp. 
Fig. 2).

For the application example it is assumed that the prod-
uct model demands a constant temperature of 200 °C. From 
the functional requirement originating from this part of 
the product’s model, other functional and non-functional 
requirements can be derived (cp. Fig. 2), e.g. regarding the 
operation of the sensor, actuator and the closed-loop control 
algorithm.

In the next step, these tasks are linked with the require-
ments they satisfy (cp. Fig. 3). The Block construct of 
SysML was extended in order to capture the information 
needed to describe the interfaces of a task: data which is gen-
erated and consumed by the tasks. By linking the provided 
and required information of the tasks, their data dependen-
cies are integrated inside the model. In Sect. 5, different 
tasks can be derived from these requirements (cp. Fig. 3). 
Tasks A and E are responsible for the monitoring of the sen-
sor’s and, respectively, actuator’s hardware condition. They 
do not generate data used by the other tasks. Consequently, 
they may run independently. In contrast, the tasks B, C, and 
D all contribute to maintaining a controlled temperature of 
the product inside the tank of the lab plant and therefore 
need to be executed in dependency to each other.

This dependency is given in the design model by the 
connections between the information generated and 

required by the tasks, i.e. task B pre-processes the value 
measured by the temperature sensor and generates data 
which is required by task C in order to execute the cor-
responding closed-loop control algorithm. The corrective 
action calculated inside task C is required by task D for the 
operation of the heating element. In addition to tasks, the 
available automation hardware can be described. The Node 
[3] encapsulates the information on computing hardware 
and its interfaces. In the application example used here, 
this part of the model contains the three nodes Tempera-
tureSensor, HeatingElement, and PLC (Fig. 4).

In order to model the interfaces of nodes, the SysML 
element Port is used, e.g., EtherCAT fieldbus. (Details of 
SysML-based modeling of nodes and field-busses cp. [3, 
24]). The fulfilling of requirements, e.g. like real time for 
specific tasks, using selected nodes with its characteristics, 
like storage and calculation power, could be proven by this 
approach. Next, approaches developed by the authors for 
the model-based deployment of applications in CPS plat-
form architectures are described for the running example. 
Section 6 subsequently highlights the possibilities of a 
combined approach.

<<requirement, functional>>
ControlledFluidHeating

<<requirement, functional>>
TemperatureAcquisition

<<requirement, functional>>
TemperatureAlteration

<<requirement, functional>>
ClosedLoopControl

Text: The product has to be treated 
with a constant temperature of 200°C

<<requirement, 
non-functional>>

ConditionMonitoring

<<requirement, 
non-functional>>

ConditionMonitoring

includes

Fig. 2   Excerpt of the application example’s requirements to guaran-
tee the constant temperature derived from the product model

<<Block, Task>>
B – Temperature 
Value Processing

<<Block, Task>>
D – Operation of
Heating Element

<<Block, Task>>
C – Closed-Loop 
Control Algorithm

sensor_value w u actuator_value

<<Block, Task>>
A – Condition Monitoring Sensor

condition_data

<<Block, Task>>
E – Condition Monitoring Actuator

condition_data

satisfies: 
TemperatureAcquisition

satisfies: 
Closed-LoopControl

satisfies: 
TemperatureAlteration

satisfies: 
ConditionMonitoring

satisfies: 
ConditionMonitoring

Fig. 3   Derived computing tasks with requirements they satisfy

<<Block, Node>>
PLC

<<Block, Node>>
TemperatureSensor

<<Block, Node>>
HeatingElement

EtherCAT Master

EtherCAT Slave EtherCAT Slave

<<EtherCAT Fieldbus>>

Fig. 4   Hardware model of the application example



691Prod. Eng. Res. Devel. (2017) 11:687–694	

1 3

5 � Model‑based approach for electronic system 
level design

ESL synthesis is the process of selecting an appropriate 
platform architecture (allocation), deploying the application 
tasks onto the allocated resources (binding), and scheduling 
the access of tasks onto shared resources. This process typi-
cally starts with an ESL specification given by a graph-based 
representation of (a) the application, (b) the architecture 
platform, and (c) the mapping options of application tasks 
onto architectural resources [28].

Figure 5 illustrates the specification graph of the applica-
tion example in Sect. 3. The application graph consists of the 
five tasks with data dependencies between tasks B, C, and D. 
The architecture graph consists of the two microcontrollers, 
one PLC, and a connecting field bus. The dashed lines 
represent mapping options indicating which task could be 
assigned to which resource. A set of weights may be anno-
tated to each mapping edge such as code costs, execution 
time, power consumption, etc. In this example, each task 
could be mapped to each of the three resources.

The design space of design candidates is defined by the 
set of mapping edges and grows exponentially with the num-
ber of tasks. Finding a design which is optimal with respect 
to multiple objectives, like cost and power consumption, and 
feasible for several design constraints, like upper bounds on 
worst-case latency and temperature, is an NP-hard multi-
objective optimization problem [25]. Therefore, the task 
of design space exploration (DSE) (cp. Fig. 6) is to auto-
matically explore and generate multiple such design candi-
dates by allocating resources, binding tasks to processing 
resources and communications to routes in the architecture, 
as well as generating the schedules on shared resources. ESL 
not only considers the deployment of tasks to processors 
(CPUs, NCs, PLCs), but also to investigate hardware/soft-
ware tradeoffs. If a task is mapped to such a unit, no software 

but a dedicated hardware implementation will be generated 
through hardware synthesis tools. The non-functional prop-
erties of each candidate are then evaluated by applying ana-
lytical and/or simulation-based techniques.

Due to the NP-hardness, population-based multi-objective 
optimization heuristics are commonly used such as evolu-
tionary algorithms [25]. Here, a population of design candi-
dates is iteratively generated, evaluated and then evolved to 
form the next population generation. In ESL synthesis usu-
ally not a single but multiple objectives are independently 
optimized. The optimization results in multiple, so-called 
Pareto-optimal solutions; each representing a certain trade-
off between the objectives. The designer can then select the 
most promising design for subsequent implementation.

The choice of an evaluation technique that is appropriate 
for this optimization process considerably depends on the 
property to quantify. For example, hardware cost is often 
modeled by a linear cost function, whereas timing and power 
are tackled by simulation-based performance evaluation [4, 
26]. In case of hard real-time requirements, the evaluation is 
performed by applying complex timing analysis techniques 
to obtain worst-case task execution times (WCET) [20]. In 
this case, a design candidate is only feasible if the WCET is 
smaller than a given deadline.

Besides real-time requirements, peak temperature is a 
major concern in ESL synthesis. Temperature evaluation is 
based on complex models and simulations. A widely applied 

Fig. 5   Specification graph of the application from Sect.  3 and its 
data dependencies (top), the architecture (bottom) and the mapping 
options of tasks onto resources (dashed edges)

Fig. 6   DSE for finding feasible and optimized ESL designs. Based 
on the specification model, an iterative optimization heuristics gener-
ates and evaluates different implementation candidates and keeps the 
optimal (non-dominated) ones



692	 Prod. Eng. Res. Devel. (2017) 11:687–694

1 3

methodology used for thermal modelling and simulation-
based evaluation is HotSpot [27].

6 � Opportunities of a combined approach

The models for aPS development (Sect. 4) and electronic 
system level design (Sect. 5) fit perfectly together to enable a 
(semi-)automatic development and—even more important—
evolution of CPPS. Figure 7 presents the respective design 
flow which combines these approaches. The SysML model 
contains all information of the CPPS. Particularly, the task 
model and the hardware model can be directly translated to 
an application graph and an architecture graph required for 
DSE. When the mapping options are not available, they can 
be automatically generated by synthesizing each task for the 
target devices and profiling their execution on them (see, 
e.g., [4]) or by applying worst-case analysis tools like AbsInt 
[28]. The behavior of a task itself may be modelled, e.g., in 
SystemC that is used in [4] for functional and timing veri-
fication and code synthesis (hardware and software). Also 
Simulink models could be used and automatically converted 
for subsequent DSE.

The requirements specify the frame conditions, design 
objectives and constraints of the product and, therefore, rep-
resent a possible link between a production system’s model 
and the model of industrial products. Thus, they contain the 
information about which objectives have to be optimized 
and which constraints have to be verified during DSE and 
are therefore used for DSE configuration: An appropriate 
evaluation technique has to be instantiated for each objective 
and each constraint. DSE then performs allocation, bind-
ing, routing, and scheduling to determine optimized and 
feasible design points. The result is a set of Pareto-optimal 
solutions each with a different tradeoff between the multiple 
objectives. For instance, Fig. 7 illustrates tradeoffs between 
latency and temperature: a high-performance solution with 
low latency might cause a high temperature, whereas using 
a slow implementation might result in a lower peak tempera-
ture. In the end, a designer has to make a decision which 
tradeoff to go. The software and hardware modules of the 
selected solution are generated and finally deployed. In the 
presented application example, a suitable deployment of 
the closed-loop control task and for the condition monitor-
ing tasks may be identified. Subsequently, the correspond-
ing software parts can be deployed to the available nodes, 
including necessary field bus configurations, etc.

7 � Strength of the combined approach

Designing, deploying, and evolving aPS is an interdiscipli-
nary challenge requiring expertise of, amongst others, pro-
duction software and hardware engineers. Already the pre-
sented example application with only minor complexity has 
27 deployment candidates. Generally, the complexity grows 
exponentially in the number of tasks. Therefore it is almost 
impossible to anticipate which impact design decisions made 
during production engineering have on the non-functional 
properties of the final networked aPS embedded in CPPS.

Models used during the design process typically are sub-
ject to uncertainties on specifications and assumptions, e.g., 
on environmental conditions. Moreover, the product or aPS 
might change or be updated during the operation. For exam-
ple, considering the application example from Sect. 3, when 
the peak temperature for treading the product has to increase, 
this influences also the peak temperature and temperature 
distribution on the microcontrollers of the temperature sen-
sor and the heating element, potentially leading to a viola-
tion of the respective temperature constraint. Particularly, 
when industrial products and CPPSs evolve faster, such revi-
sions have to be made (a) more frequently and (b) be imple-
mented much faster in an existing CPPS without delaying 
the ongoing production process.

The proposed design flow is intended to tackle exactly 
this challenge. The SysML frontend represents a modelling 

Fig. 7   Proposed design flow for evolution of CPPS by combining 
models from automation level design and electronic system level 
design for automatic deployment. Blue edges indicate model transfor-
mations that should happen automatically to alleviate the evolution of 
CPPSs



693Prod. Eng. Res. Devel. (2017) 11:687–694	

1 3

technique that is intuitive for production engineers: it pro-
vides both a flexible specification framework guaranteeing 
conformity to production engineering standards and to con-
sider environmental aspects of CPPS such as temperature of 
plant, sensor subsystems, etc.

The strength of the proposed flow is that, based on this 
specification, an automatic multi-objective DSE can be initi-
ated. The respective methodology outlined in Sect. 5 deploys 
not only software to CPUs, but also hardware-synthesized 
functions, e.g., on application-specific integrated circuits 
or field-programmable gate arrays, are considered. This 
happens automatically and has proven high scalability for 
designing distributed systems, see e.g. [20]. The result is 
a set of Pareto-optimal CPPS design candidates. Thus, the 
production engineer gets feedback about the implications 
of his/her design decisions on the deployment and non-
functional properties of the CPPS under design. The design 
flow is completed by an automatic generation of software 
code and hardware modules implementing the functions to 
be deployed through compiler and high-level hardware syn-
thesis technologies for the proper targets.

8 � Conclusion and outlook

Nowadays, the increasing speed of technical innovations 
and changing customer requirements, which may cause 
separate evolutions of a production system as well as of a 
product, causes the lifecycles of products and production 
systems to diverge. In order to cope with this challenges, 
new approaches for proactively handling the co-evolution 
of products and production systems need to be developed. 
Methods and techniques from MBSE have already had a 
great impact in academia and partially in industry. How-
ever, model-based approaches often do not provide holistic 
descriptions of all important aspects to sufficiently handle 
the evolution of a production system. In this paper, a mod-
eling approach is motivated, which couples development 
models of aPS with model-based ESL design. Furthermore, 
by incorporating functional and non-functional requirements 
to the production process, a first possibility to couple a prod-
uct’s model with the model of an aPS is proposed. The meth-
odology includes a design space exploration that performs 
a multi-objective optimization. This means that multiple 
deployments are evaluated with respect to objectives like 
resource costs, energy efficiency, latency, and throughput. 
The result of this process is a set of Pareto-optimal deploy-
ment options. They reflect different trade-offs. For example, 
one deployment includes many high-cost resources but has 
a high throughput. Whereas another one includes low-cost 
resource with lower throughput. A decision maker can then 
select the deployment that fits best his/her needs very early 
in the design. This exploration therefore helps a lot to avoid 

any late changes in the design often required due to either 
under-provisioning or under-utilizing resources. Moreover, 
for the addressed use-case of deployment of functionality 
in CPPS, a concept to co-evolve the model of a CPPS along 
with changing production process requirements and, hence, 
evolutions of a product’s model is proposed. By the moti-
vated concept (cp. Fig. 7) future works are outlined which 
include the elaboration and implementation of the discussed 
approach. Furthermore, evolvable model descriptions for 
products as CPS will be developed in close integration with 
the CPPS models in order to fully enable a co-evolution and 
optimization of both, CPPS and CPS.

Open Access  This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made.

References

	 1.	 Birkhofer R, Feldmeier G, Kalhoff J et al (2010) Life-Cycle-Man-
agement für Produkte und Systeme der Automation: Ein Leitfaden 
des Arbeitskreises Systemaspekte im ZVEI Fachverband Automa-
tion, Frankfurt

	 2.	 Vogel-Heuser B, Fay A, Schaefer I et al (2015) Evolution of soft-
ware in automated production systems: challenges and research 
directions. J Syst Softw 110:54–84. doi:10.1016/j.jss.2015.08.026

	 3.	 Vogel-Heuser B, Schütz D, Frank T et al (2014) Model-driven 
engineering of manufacturing automation software projects—
a SysML-based approach. Mechatronics 24(7):883–897. 
doi:10.1016/j.mechatronics.2014.05.003

	 4.	 Keinert J, Streubūhr M, Schlichter T et al (2009) SystemCoDe-
signer—an automatic ESL synthesis approach by design space 
exploration and behavioral synthesis for streaming applica-
tions. ACM Trans Des Autom Electron Syst 14(1):1–23. 
doi:10.1145/1455229.1455230

	 5.	 Vepsalainen T, Sierla S, Peltola J et al (2010) Assessing the indus-
trial applicability and adoption potential of the AUKOTON model 
driven control application engineering approach. In: 8th IEEE 
INDIN, pp 883–889

	 6.	 Fay A, Vogel-Heuser B, Frank T et al (2015) Enhancing a model-
based engineering approach for distributed manufacturing auto-
mation systems with characteristics and design patterns. J Syst 
Softw 101:221–235. doi:10.1016/j.jss.2014.12.028

	 7.	 Reuter A, Kircher C, Verl A (2010) Manufacturer-independent 
mechatronic information model for control systems. Prod Eng Res 
Devel 4(2):165–173. doi:10.1007/s11740-010-0220-y

	 8.	 Cao Y, Liu Y, Paredis CJ (2011) System-level model integra-
tion of design and simulation for mechatronic systems based 
on SysML. Mechatronics 21(6):1063–1075. doi:10.1016/j.
mechatronics.2011.05.003

	 9.	 Thramboulidis K, Frey G (2011) Towards a model-driven IEC 
61131-based development process in industrial automation. JSEA 
04(04):217–226. doi:10.4236/jsea.2011.44024

	10.	 Bassi L, Secchi C, Bonfe M et al (2011) A SysML-based meth-
odology for manufacturing machinery modeling and design. 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jss.2015.08.026
https://doi.org/10.1016/j.mechatronics.2014.05.003
https://doi.org/10.1145/1455229.1455230
https://doi.org/10.1016/j.jss.2014.12.028
https://doi.org/10.1007/s11740-010-0220-y
https://doi.org/10.1016/j.mechatronics.2011.05.003
https://doi.org/10.1016/j.mechatronics.2011.05.003
https://doi.org/10.4236/jsea.2011.44024


694	 Prod. Eng. Res. Devel. (2017) 11:687–694

1 3

IEEE/ASME Trans Mechatron 16(6):1049–1062. doi:10.1109/
TMECH.2010.2073480

	11.	 Bonfè M, Fantuzzi C, Secchi C (2013) Design patterns for 
model-based automation software design and implementa-
tion. Control Eng Pract 21(11):1608–1619. doi:10.1016/j.
conengprac.2012.03.017

	12.	 Estévez E, Marcos M, Lüder A et al (2010) PLCopen for achiev-
ing interoperability between development phases. In: 15th IEEE 
ETFA, pp 1–8

	13.	 Estevez E, Marcos M (2012) Model-based validation of industrial 
control systems. IEEE Trans Ind Inf 8(2):302–310. doi:10.1109/
TII.2011.2174248

	14.	 Brecher C, Nittinger JA, Karlberger A (2013) Model-based control 
of a handling system with SysML. Procedia Comput Sci 16:197–
205. doi:10.1016/j.procs.2013.01.021

	15.	 Fuentes DED, Becker U, Diekhake P et al (2016) Evaluation and 
simulation of building automation systems based on their Auto-
mationML description. In: 21st IEEE ETFA, pp 1–6

	16.	 Vyatkin V (2011) IEC 61499 as enabler of distributed and intel-
ligent automation: state-of-the-art review. IEEE Trans Ind Inf 
7(4):768–781. doi:10.1109/TII.2011.2166785

	17.	 Hirsch M, Missal D, Hanisch H-M (2008) Design and verification 
of distributed industrial manufacturing control systems. In: 34th 
annual conference of IEEE industrial electronics, pp 152–157

	18.	 Lugert S, Gisy S, Kato M (2010) Combination of FDT and EDDL 
technologies: Interpreter DTM to unify device integration. In: 
SICE annual conference 2010, proceedings of, pp 721–723

	19.	 Teich J (2012) Hardware/software codesign: the past, the pre-
sent, and predicting the future. Proc IEEE 100(Special Centennial 
Issue):1411–1430. doi:10.1109/JPROC.2011.2182009

	20.	 Glaß M, Lukasiewycz M, Teich J et al (2009) Designing hetero-
geneous ECU networks via compact architecture encoding and 

hybrid timing analysis. In: ACM/IEEE design automation confer-
ence, vol 46, pp 43–46

	21.	 Backhaus J, Scheib J, Pieloth R et al (2016) Automatic program-
ming of processing machines—digital models as a basis for 
efficient engineering. Automatisierungstechnische Praxis (atp) 
58(11):36–45

	22.	 Singh AK, Shafique M, Kumar A et al (2013) Mapping on multi/
many-core systems. In: Design automation conference (DAC), 
vol 50

	23.	 Karl F, Reinhart G (2015) Reconfigurations on manufacturing 
resources: Identification of needs and planning. Prod Eng Res 
Devel 9(3):393–404. doi:10.1007/s11740-015-0607-x

	24.	 Hashemi Farzaneh M, Feldmann S, Legat C et al (2013) Modeling 
multicore programmable logic controllers in networked automa-
tion systems. In: 39th IEEE IECON, pp 4398–4403

	25.	 Blickle T, Teich J, Thiele L (1998) System-level synthesis using 
evolutionary algorithms. Des Autom Embedded Syst 3(1):23–58. 
doi:10.1023/A:1008899229802

	26.	 Rosales R, Glass M, Teich J et al (2014) MAESTRO—holistic 
actor-oriented modeling of nonfunctional properties and firmware 
behavior for MPSoCs. ACM Trans Des Autom Electron Syst 
19(3):1–26. doi:10.1145/2594481

	27.	 Huang W, Ghosh S, Velusamy S et al (2006) HotSpot: a com-
pact thermal modeling methodology for early-stage VLSI 
design. IEEE Trans VLSI Syst 14(5):501–513. doi:10.1109/
TVLSI.2006.876103

	28.	 Ferdinand C (2004) Worst case execution time prediction by static 
program analysis. In: International parallel & distributed process-
ing symposium IEEE, pp 125–127

	29.	 ISO 3511-3 (1987) Process measurement control functions and 
instrumentation; symbolic representation; part 3: detailed symbols 
for instrument interconnection diagrams (ISO 3511-3:1984-07)

https://doi.org/10.1109/TMECH.2010.2073480
https://doi.org/10.1109/TMECH.2010.2073480
https://doi.org/10.1016/j.conengprac.2012.03.017
https://doi.org/10.1016/j.conengprac.2012.03.017
https://doi.org/10.1109/TII.2011.2174248
https://doi.org/10.1109/TII.2011.2174248
https://doi.org/10.1016/j.procs.2013.01.021
https://doi.org/10.1109/TII.2011.2166785
https://doi.org/10.1109/JPROC.2011.2182009
https://doi.org/10.1007/s11740-015-0607-x
https://doi.org/10.1023/A:1008899229802
https://doi.org/10.1145/2594481
https://doi.org/10.1109/TVLSI.2006.876103
https://doi.org/10.1109/TVLSI.2006.876103

	Towards the co-evolution of industrial products and its production systems by combining models from development and hardwaresoftware deployment in cyber-physical systems
	Abstract 
	1 Introduction
	2 Related work
	2.1 Model-based development of flexible automated production systems
	2.2 Model-based deployment for heterogeneous CPS platforms

	3 Application example
	4 Model-based development of aPS
	5 Model-based approach for electronic system level design
	6 Opportunities of a combined approach
	7 Strength of the combined approach
	8 Conclusion and outlook
	References


