Skip to main content
Log in

Biomimetic design of an ultra-compact and light-weight soft muscle glove

  • Assembly
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Wearable robotic hand devices can support people doing hand-intensive tasks by reducing the physical stress and strain on the human hand. For the safety and comfort of the user, such a device should be compatible and inconspicuous. Based on these two requirements, this paper presents a biomimetic design of a wearable robotic hand device called soft muscle glove, aiming to restore the salient features and functionalities of the human hand. Inspired by the hand musculature, the soft structure of the glove contains strings, bands and shape memory alloy (SMA) spring actuators to replicate the functionalities of tendons, pulleys and muscles in the human hand. The low-mass and small-size SMA spring actuator allows an ultra-compact and light-weight design of the glove with high dexterity. The glove weighs in total 85.03 g inclusive of the actuators and microcontroller. The performance of the muscle glove was experimentally investigated through hand function tests. The experimental results suggest that the glove can achieve functional range of motion of the human hand and can perform a wide range of grasp types defined in grasp taxonomy. Moreover, the grasping performance of the muscle glove with coupled and uncoupled flexion of the finger joints was compared. The uncoupled control shows a better matching between the grasp posture and the objects form, contributing to more efficient force transmission. This confirms the benefits of the proposed highly biomimetic design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(modified from [22])

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. European Foundation for the Improvement of Living and Working Conditions and others (2014) Changes over time--first findings from the fifth European working conditions survey. Publications Office of the European Union

  2. Barr AE, Barbe MF, Clark BD (2004) Work-related musculoskeletal disorders of the hand and wrist: epidemiology, pathophysiology, and sensorimotor changes. J Orthop Sports Phys Ther 34(10):610–627. doi:10.2519/jospt.2004.34.10.610

    Article  Google Scholar 

  3. Bureau of labor statics: nonfatal occupational injuries and illnesses requiring days away from work, 2015 (2016). https://www.bls.gov/news.release/osh2.nr0.htm. Accessed 6 Dec 2016

  4. Ikeuchi Y, Ashihara J, Hiki Y, Kudoh H, Noda T (2009) Walking assist device with bodyweight support system. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, pp 4073–4079. doi:10.1109/IROS.2009.5354543

  5. Otten B, Stelzer P, Weidner R, Argubi-Wollesen A, Wulfsberg JP (2016) A novel concept for wearable, modular and soft support systems used in industrial environments. In: 2016 49th Hawaii international conference on system sciences (HICSS), pp 542–550. doi:10.1109/HICSS.2016.74

  6. Diftler M, Ihrke CA, Bridgwater LB, Davis DR, Linn DM, Laske EA, Ensley KG, Lee JH (2014) RoboGlove—a robonaut derived multipurpose assistive device. In: International conference on robotics and automation. Hong Kong, China

  7. ExoHand—Festo corporate. https://www.festo.com/group/en/cms/10233.htm. Accessed 23 Nov 2016

  8. Weidner R, Kong N, Wulfsberg JP (2013) Human hybrid robot: a new concept for supporting manual assembly tasks. Prod Eng 7(6):675–684. doi:10.1007/s11740-013-0487-x

    Article  Google Scholar 

  9. Worsnopp T, Peshkin M, Colgate J, Kamper D (2007) An actuated finger exoskeleton for hand rehabilitation following stroke. In: 2007 IEEE 10th international conference on rehabilitation robotics, pp 896–901. doi:10.1109/ICORR.2007.4428530

  10. Chiri A, Vitiello N, Giovacchini F, Roccella S, Vecchi F, Carrozza MC (2012) Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Trans Mechatron 17(5):884–894. doi:10.1109/TMECH.2011.2144614

    Article  Google Scholar 

  11. Brown P, Jones D, Singh S, Rosen J (1993) The exoskeleton glove for control of paralyzed hands. In: [1993] Proceedings IEEE international conference on robotics and automation, pp 642–647. IEEE Comput Soc Press. doi:10.1109/robot.1993.292051

  12. Wege A, Hommel G (2005) Development and control of a hand exoskeleton for rehabilitation of hand injuries. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, pp 3046–3051. doi:10.1109/IROS.2005.1545506

  13. Ueki S, Kawasaki H, Ito S, Nishimoto Y, Abe M, Aoki T, Ishigure Y, Ojika T, Mouri T (2012) Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Trans Mechatron 17(1):136–146. doi:10.1109/TMECH.2010.2090353

    Article  Google Scholar 

  14. Fontana M, Dettori A, Salsedo F, Bergamasco M (2009) Mechanical design of a novel hand exoskeleton for accurate force displaying. In: Robotics and automation, 2009. ICRA ’09. IEEE international conference On, pp 1704–1709. doi:10.1109/ROBOT.2009.5152591

  15. Delph MA, Fischer SA, Gauthier PW, Luna CHM, Clancy EA, Fischer GS (2013) A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation. In: Rehabilitation robotics (ICORR), 2013 IEEE international conference On, pp 1–7. doi:10.1109/ICORR.2013.6650426

  16. In H, Kang BB, Sin M, Cho KJ (2015) Exo-Glove: a wearable robot for the hand with a soft tendon routing system. IEEE Robotics Autom Mag 22(1):97–105. doi:10.1109/MRA.2014.2362863

    Article  Google Scholar 

  17. Nilsson M, Ingvast J, Wikander J, von Holst H (2012) The soft extra muscle system for improving the grasping capability in neurological rehabilitation. In: 2012 IEEE-EMBS conference on biomedical engineering and sciences, pp 412–417. doi:10.1109/IECBES.2012.6498090

  18. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ (2015) Soft robotic glove for combined assistance and at-home rehabilitation. Rob Auton Syst 73:135–143. doi:10.1016/j.robot.2014.08.014

    Article  Google Scholar 

  19. Sasaki D, Noritsugu T, Takaiwa M, Yamamoto H (2004) Wearable power assist device for hand grasping using pneumatic artificial rubber muscle. In: Robot and human interactive communication, 2004. ROMAN 2004. 13th IEEE international workshop On, pp 655–660. doi:10.1109/ROMAN.2004.1374840

  20. Pons JL (ed) (2008) Wearable robots: biomechatronic exoskeletons. Wiley, Hoboken, NJ

    Google Scholar 

  21. Dittmer DK, Buchal RO, Dawn E. MacArthur (1993) The SMART wrist-hand orthosis (WHO) for quadriplegic patients. J Prosthet Orthot 5(3):73

  22. Labeled parts of the hand. http://gemn.dvrlists.com/labeled-parts-of-the-hand/. Accessed 10 Sep 2016

  23. Long C, Conrad PW, Hall EA, Furler SL (1970) Intrinsic–extrinsic muscle control of the hand in power grip and precision handling. J B Jt Surg 52(5):853–867

    Article  Google Scholar 

  24. Brand P, Beach R, Thompson D (1981) Relative tension and potential excursion of muscles in the forearm and hand. J Hand Surg 6(3):209–219. doi:10.1016/S0363-5023(81)80072-X

    Article  Google Scholar 

  25. Gilroy AM, MacPherson BR, Voll MM, Wesker K, Schünke M (eds) (2016) Atlas of anatomy, 3rd edn. Thieme, New York

    Google Scholar 

  26. Pruski A, Kihl H (1993) Shape memory alloy hysteresis. Sens Actuator A Phys 36(1):29–35. doi:10.1016/0924-4247(93)80137-6

    Article  Google Scholar 

  27. Ma N, Song G (2003) Control of shape memory alloy actuator using pulse width modulation. Smart Mater Struct 12(5):712–719. doi:10.1088/0964-1726/12/5/007

    Article  Google Scholar 

  28. Hermens HJ, Freriks B, Merletti R, Stegeman D, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg G (1999) European recommendations for surface electromyography. Roessingh Res Dev 8(2):13–54

    Google Scholar 

  29. Crasto JA, Sayari AJ, Gray RRL, Askari M (2015) Comparative analysis of photograph-based clinical goniometry to standard techniques. Hand 10(2):248–253. doi:10.1007/s11552-014-9702-2

    Article  Google Scholar 

  30. Georgeu G (2002) Lateral digital photography with computer-aided goniometry versus standard goniometry for recording finger joint angles. J Hand Surg 27(2):184–186. doi:10.1054/jhsb.2001.0692

    Article  Google Scholar 

  31. Kapandji A (1986) Clinical test of apposition and counter-apposition of the thumb. Ann De Chir De La Main 5(1):67–73

    Article  Google Scholar 

  32. Lang CE (2004) Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J Neurophysiol 92(5):2802–2810. doi:10.1152/jn.00480.2004

    Article  Google Scholar 

  33. Feix T, Romero J, Schmiedmayer HB, Dollar AM, Kragic D (2016) The GRASP taxonomy of human grasp types. IEEE Trans Hum Mach Syst 46(1):66–77. doi:10.1109/THMS.2015.2470657

Download references

Acknowledgements

This research was conducted in the project “Smart ASSIST Smart, Adjustable, Soft and Intelligent Support Technologie” (16SV7114) and funded by the Federal Ministry of Education and Research (BMBF) program for an interdisciplinary build-up of competence in human machine interaction for demographic changes. Supervision is provided by VDI/VDE INNOVATION GmbH. The sole responsibility for the manuscript contents lies with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhejun Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Linnenberg, C., Argubi-Wollesen, A. et al. Biomimetic design of an ultra-compact and light-weight soft muscle glove. Prod. Eng. Res. Devel. 11, 731–743 (2017). https://doi.org/10.1007/s11740-017-0767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0767-y

Keywords

Navigation