Skip to main content
Log in

Parametrization construction of biorthogonal wavelet filter banks for image coding

  • Original paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

We construct popular biorthogonal wavelet filter banks (BWFBs) having the linear phase and arbitrary multiplicity of vanishing moments (VMs). A novel parametrization construction technique, which is based on the theory of Diophantine equation, is presented and explicit one-parameter expressions of the BWFBs are derived. Using the expressions, any one-parameter family of BWFBs with different VMs can be constructed, and ten families, i.e., 5/7, 6/6, 9/7, 6/10, 5/11, 10/6, 13/7, 6/14, 17/11, and 10/18 families, are constructed here. The free parameter can be used to optimize the resulting BWFBs with respect to other criteria. In particular, in each family, three specific BWFBs with attractive features are obtained by adjusting the free parameter: the first has optimum coding gain and rational coefficients; the second which also has rational coefficients is very close to a quadrature mirror filter (QMF) bank; and the third which has binary coefficients can realize a multiplication-free discrete wavelet transform. In addition, four BWFBs are systematically verified to exhibit performance competitive to several state-of-the-art BWFBs for image compression, and yet require lower computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen A., Daubechies I. and Feauveau J.C. (1992). Biorthogonal Bases of Compactly Supported Wavelets. Commun. Pure Appl. Math. 45: 485–560

    Article  MATH  MathSciNet  Google Scholar 

  2. Vetterli M. and Herley C. (1992). Wavelets and filter banks: theory and design. IEEE Trans. Image Process. 40(9): 2207–2232

    MATH  Google Scholar 

  3. Ansari R., Guillemot C. and Kaiser J.F. (1991). Wavelet construction using lagrange halfband filters., IEEE Trans. Circ. Syst. 38(9): 1116–1118

    Article  Google Scholar 

  4. Villasenor J.D., Belzer B. and Liao J. (1995). Wavelet filter evaluation for image compression. IEEE Trans. Image Process. 4(8): 1053–1060

    Article  Google Scholar 

  5. Sweldens W. (1996). The Lifting Scheme: A Custom-design Construction of Biorthogonal Wavelets. Appl. Comput. Harmon. Anal. 3: 186–200

    Article  MATH  MathSciNet  Google Scholar 

  6. Tsai M.J., Villasenor J.D. and Chen F. (1996). Stack-run image coding. IEEE Trans. Circ. Syst. Video Tech. 6(5): 519–521

    Article  Google Scholar 

  7. Cooklev T., Nishihara A. and Sablatash M. (1997). Regular orthonormal and biorthogonal wavelet filters. Signal Process. 57: 121–137

    Article  MATH  Google Scholar 

  8. Wei D., Wells R.O., Burrus C.S. and Tian J (1998). A new class of biorthogonal wavelet systems for image transform coding. IEEE Trans. Image Process. 7(7): 1000–1013

    Article  MATH  MathSciNet  Google Scholar 

  9. Dahmen W., Kunoth A. and Urban K. (1999). Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions. Appl. Comput. Harmon. Anal. 6: 132–196

    Article  MATH  MathSciNet  Google Scholar 

  10. Tay D.B.H. (2000). Rationalizing the coefficients of popular biorthogonal wavelet filters. IEEE Trans. Circ. Syst. Video Tech. 10(6): 998–1005

    Article  Google Scholar 

  11. Tay, D.B.H.: Families of binary coefficient biorthogonal wavelet filters. Proc. of IEEE ISCAS 2000, Geneva, Switzerland 3(28–31), 371–374 (2000)

  12. He T.-X. (2001). Biorthogonal wavelets with certain regularities. Appl. Comput. Harmon. Anal. 11: 227–242

    Article  MATH  MathSciNet  Google Scholar 

  13. Winger L.L. and Venetsanopoulos A.N. (2001). Biorthogonal nearly coiflet wavelets for image compression. Signal Processing: Image Commu. 16: 859–869

    Article  Google Scholar 

  14. Shui P.-L., Bao Z., Zhang X. and Tang Y. (2002). Two-channel Adaptive Biorthogonal Filterbanks via Lifting. Signal Process. 82: 881–893

    Article  MATH  Google Scholar 

  15. Averbuch A.Z. and Zheludev V.A. (2002). Construction of biorthogonal discrete wavelet transforms using interpolatory splines. Appl. Comput. Harmon. Anal. 12: 25–56

    Article  MATH  MathSciNet  Google Scholar 

  16. Kotteri K.A., Bell A.E. and Carletta J.E. (2004). Design of Multiplierless, high-performance, wavelet filter banks with image compression applications. IEEE Trans. Circuits and Systems—I: Regular Papers 51(3): 483–494

    Article  Google Scholar 

  17. Liu Z. and Zheng N. (2006). Parametrization construction of integer wavelet transforms for embedded image coding. Lecture Notes in Computer Science 4153: 26–29

    Article  Google Scholar 

  18. Liu, Z., Zheng, N., Liu, Y., van de Wetering, H.: Optimization design of biorthogonal wavelets for embedded image coding. IEICE Trans. Info. Syst. (2007) (in press)

  19. Daubechies I. and Sweldens W. (1998). Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3): 247–269

    Article  MATH  MathSciNet  Google Scholar 

  20. ISO/IEC 15444-1 (2nd Edition), Information Technology—JPEG 2000 Image Coding System: Core Coding System (2004)

  21. Katto J. and Yasuda Y. (1991). Performance evaluation of subband coding and optimization of its filter coefficients. In: Proceeding of SPIE Symposium on Visual Comm.and Image Processing vol. 1605: 95–106

    Google Scholar 

  22. Lightstone M., Majani E. and Mitra S.K. (1997). Low bit-rate design considerations for wavelet-based image coding. Multidimensional Syst.Signal Process 8(1): 111–128

    Article  MATH  Google Scholar 

  23. Tay D.B.H. and Kingsbury N.G. (1993). Flexible design of multidimensional perfect reconstruction FIR 2-Band filters using transformations of variables. IEEE Trans.Image Process. 2(4): 466–480

    Article  Google Scholar 

  24. Deslauriers G. and Dubuc S. (1989). Symmetric iterative interpolation processes. Constructive Approx. 5: 49–68

    Article  MATH  MathSciNet  Google Scholar 

  25. Strang G. and Nguyen T. (1996). Wavelets and filter banks. Wellesley-Cambridge Press, Wellesley, 214–218

    Google Scholar 

  26. Calderbank A.R., Daubechies I., Sweldens W. and Yeo B.-L. (1998). Wavelet transforms that map integers to integers. Appl. Comput. Harmon. Anal. 5: 332–369

    Article  MATH  MathSciNet  Google Scholar 

  27. Adams M.D. and Kossentini F. (2000). Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis. IEEE Trans. Image Process. 9(6): 1010–1024

    Article  MATH  MathSciNet  Google Scholar 

  28. Burt P.J. and Adelson E.H. (1983). The laplacian pyramid as a compact image code. IEEE Trans.Commu. 31(4): 532–540

    Article  Google Scholar 

  29. Antonini M., Barlaud M., Mathieu P. and Daubechies I. (1992). Image coding using wavelet transform. IEEE Trans. Image Process 1(2): 205–220

    Article  Google Scholar 

  30. ISO/IEC 15444-2, Information Technology—JPEG 2000 Image Coding System: Extensions (2004)

  31. Mallat S.G. (1989). Multifrequency Channel Decompositions of Images and Wavelet Models. IEEE Trans. Acoust. Speech Signal Processing, 37(12): 2091–2110

    Article  Google Scholar 

  32. Woods J.W. and Naveen T. (1992). A filter based bit allocation scheme for subband compression of HDTV. IEEE Trans.Image Process 1(3): 436–440

    Article  Google Scholar 

  33. Said A. and Pearlman W.A. (1996). A new, fast, efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circ. Syst. Video Tech. 6(3): 243–250

    Article  Google Scholar 

  34. Pearlman W.A., Islam A., Nagaraj N. and Said A. (2004). Efficient, low-complexity image coding with a Set-partitioning embedded block coder. IEEE Trans. Circ. Syst. Video Tech. 14(11): 1219–1235

    Article  Google Scholar 

  35. Wang E.-P. and Wang C.-z. (1992). Polynomial and Polynomial Matrix (Chinese Edition). Defense Industry Press, Beijing, China

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaide Liu.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant 60021302

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Zheng, N. Parametrization construction of biorthogonal wavelet filter banks for image coding. SIViP 1, 63–76 (2007). https://doi.org/10.1007/s11760-007-0001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-007-0001-z

Keywords

Navigation