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Abstract This paper proposes a new framework for multi-
component images segmentation which plays an increasing
role in many imagery applications like astronomy, medicine,
remote sensing, chemistry, biology etc. In fact, inference on
such images is a very difficult task when the number of com-
ponents increases due to the well-known Hughes phenome-
non. A common solution is to reduce dimensionality, keeping
only relevant information before segmentation. Linear mod-
els usually fail with complex data structure, and mixture of
linear models, each of which modeling a local cluster of the
data, is more suitable. Moreover, a probabilistic formulation
based on linear latent variable models allows efficient solu-
tion using a maximum-likelihood-based decision to recover
the clusters. However, for multi-component image classifica-
tion, this is not enough because it completely neglects the spa-
tial positions of the multi-dimensional pixels on the lattice.
Therefore, we propose to consider the neighborhood by intro-
ducing a Markovian a priori to efficiently regularize pixel
classification. As a consequence, segmentation and reduc-
tion are performed simultaneously in an efficient and robust
way. In this paper, we focus on the Probabilistic Principal
Component Analysis (PPCA) as a latent variable model, and
the Hidden Markov quad-Tree (HMT) as an a priori for reg-
ularization. The method performs well both on synthetic and
real remote sensing and Stokes–Mueller images.
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1 Introduction

Multi-component image segmentation represents a great
challenge in many imagery applications in medicine, remote
sensing, astronomy, non-destructive control, etc. Indeed,
today’s new systems and new sensor technologies allow
acquisition of spatially resolved high-dimensional data with
a huge quantity of information. The segmentation of high-
dimensional multi-component (i.e., multi-wavelength, multi-
modal, multi-variate) images remains a difficult task and
is more complicated when observations are corrupted with
noise. Segmentation algorithms learn data structure to gather
pixels according to a given measure, under some smoothness
constraints. They require sufficient observations to correctly
estimate model parameters. For multi-component images the
required number of samples grows quickly along with the
dimension (i.e., number of components) so that the segmen-
tation accuracy decreases rapidly in practice. This is the curse
of dimensionality (Hughes phenomenon) [1] which consists
of an important loss of parameter estimation accuracy as
dimensionality grows. To address this problem, one may
carry out a space dimensionality reduction as a preprocess-
ing step [2]. Fortunately, high-dimensional observations can
often be described in a significantly smaller dimension than
the original due to redundancy and correlation between com-
ponents. Thus, many approaches were proposed in the past
decade, all of them seek a mapping onto a reduced dimen-
sional space by maximizing various criteria [3–5]. Data with
complex structures require non-linear mapping [6], and
several works have been proposed to develop non-linear
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models. One attractive way is to use a collection of locally lin-
ear models, so that each observation is modeled using either
a single local model [7] or a mixture of all local models
[6,8,9]. In the first case, observations are hardly partitioned
into clusters (i.e., classes), each one spanned by a local linear
model. In the second case, each observation is shared by
all clusters. When local models are coupled with probabilis-
tic modeling, the observation likelihood is given by a den-
sity mixture model [6,8,9]. Nevertheless, for D-components
images, the clustering established by such mixture models
is based only on the closeness of the observations (pixels)
in the D-dimensional space and do not take into account
their proximity in the image lattice. We propose to use a
Markovian a priori associated with such model to regularize
D-dimensional pixel classification. In this way, the pixel clas-
sification is based on their closeness both in the R

D space and
the image lattice. Thus, segmentation and reduction are per-
formed simultaneously avoiding the Hughes phenomenon.
In this work, we focus on the Probabilistic Principal Com-
ponent Analysis (PPCA) as a latent variable model, and the
Hidden Markov quad-Tree (HMT) as a Markovian a priori.
However, our method may be extended to other latent vari-
able models like factor analysis and independent component
analysis and other Markov models such as Hidden Markov
Chain and Markov Random Field. Our technique was applied
on synthetic and real remote sensing and Mueller data. The
observed results were very promising.

The paper is organized as follows. The Hidden Markov
quad-Tree (HMT) model is described in Sect. 2. In Sect. 3,
the PPCA and the Mixture of Probabilistic Principal Com-
ponent Analyzers (MPPCA) are presented and linked to the
HMT. In Sect. 4, the advantages of the method are discussed
and thoroughly analyzed. Section 5 presents the experiments
on synthetic and real multi-component images. Finally, a
conclusion outlining possible extensions of the method is
presented in Sect. 6.

2 Hidden Markov quad-Tree

In the past decade, Hidden Markov models have proved to be
robust and efficient image analysis methods for many detec-
tion, denoising, segmentation, classification and pattern rec-
ognition tasks. Nowadays, in the multi-component image
context, handling correlated and redundant observed data
requires particular modeling framework, and poses again
the problem of constructing relevant models. Resorting to a
Bayesian scheme based on Markov models is indeed attrac-
tive when dealing with large amount of multi-component
observations, because of their parsimonious properties. Nev-
ertheless, the well-known Markov Random Fields (MRF)
leads to iterated optimization algorithms (due to the fact
that most of Markov models are non-causal) with high com-
putation cost [10], even for one-dimensional image. As a

consequence, the exact inference is not computable and has to
be iteratively approximated, which might turn prohibitively
expensive. Although some multi-grid strategies to decrease
the computation time have been proposed in the past decade
[11–14], the processing of high-dimensional data remains
problematic. One way to circumvent this problem is to resort
to a Markov model on a chain [15] or a quadtree where
in-scale causality allows non-iterative inference [16,17] as
in the case of hidden Markov chains [15].

A Hidden Markov quad-Tree (HMT) is an acyclic graph
G = (S, L) with a set of nodes S and a set of edges L .
S is partitioned into “scales”, i.e.; S = S0 ∪ S1 . . . ∪ SR ,
such that SR = {r} is the root, Sn involves 4R−n nodes,
and S0 is the finest scale formed by the leaves. Each node
s, except the root r , has a unique predecessor, its “parent”
s−. Each node s, expect the “leaves”, has four “children”
s+ = {u ∈ S : u− = s}. We note also s++ all the descen-
dent of s.

Let the hidden process1 X which assigns to each node
s ∈ S a hidden state Xs chosen from the label set � =
{ω1, . . . , ωK } of the K classes. X is assumed Markovian in
scale, i.e., :

P(xn|xk, k > n) = P(xn|xn+1); xn = {xs : s ∈ Sn}. (1)

Moreover, Xs , s ∈ Sn , is independent from all Xu , u ∈ Sn+1,
given its parent and the inter-scale transition probability can
be factorized in the following way [16]:

P(xn|xn+1) =
∏

s∈Sn

P(xs |xs−) (2)

The hidden process X is called Markov tree because it verifies
[16]:

P(x) = P(xr )

R−1∏

n=0

∏

s∈Sn

P(xs/xs−) (3)

The multi-component observations Y are introduced at the
scale S0 so that each D-dimensional pixel ys is linked to the
hidden state Xs (Fig. 1). The HMT assumes ys independent
from all the quad-Tree given its hidden state, which is for-
mulated as follows :

P(ys/x, y − {ys}) = P(ys/xs). (4)

Thus the probability of Y conditionally to X is expressed as
the following product:

P(y|x) =
∏

s∈S0

P(ys |xs), (5)

where ∀ s ∈ S0, P(ys |xs = ωi ), called data-driven term,
captures the likelihood of the observation ys w.r.t the class

1 To simplify notation, we will denote the discrete probability P(X = x)

as P(x).
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Fig. 1 Example of a dependency graph corresponding to a quadtree
structure on a 4 × 4 lattice. White circles represent labels and black
circles represent multi-band observations ys , s ∈ S. Each node s has a
unique parent s−, and four children s+ = {s+

1 , . . . , s+
4 }

ωi . If no data is available at a given site s in the image, i.e.,
missing or masked data, the likelihood at this site is set to 1.
In Sect. 3, we link MPPCA to the HMT so that each class
is spanned by a local PPCA model. Thus P(ys |xs = ωi )

is computed as the likelihood of ys w.r.t the local PPCA
modeling of the class ωi .

From the assumptions above, the joint distribution P(x, y)

can easily factorized as follows :

P(x, y) = P(xr )
∏

s �=r

P(xs |xs−)
∏

s∈S0

P(ys |xs). (6)

The HMT parameters are :

• �x the a priori parameters regrouping :
– {πi = p(xr = ωi )}i=1, ...,K the probabilies at the

root,
– {ai j = p(xs = ω j/xs− = ωi )}i, j=1, ...,K the par-

ent/child transition probabilities,
• �y the parameters of the likelihoods {P(.|xs=ωi )}i=1,...,K.

One of the interests of this model is the possibility of com-
puting exactly the posterior marginals P(xs/y) and
P(xs, x−

s /y) at each node s in two passes on the quad-Tree
(Algorithm 1).

The EM algorithm used for the estimation of the a pri-
ori parameters �x , leads to an iterative procedure with the
followings updates [16] :

a[c+1]
i j =

∑
s∈Sn , n �=r p[c](xs = ω j , xs− = ωi/y)

∑
s∈Sn , n �=r p[c](ss− = ωi/y)

π
[c+1]
i = p[c](xr = ωi/y) (7)

where [c] stands for the current iteration and p[c](xs = ωi/y)

and p[c](xs = ω j , xs− = ωi/y) are computed by way of
the two passes of Algorithm 1 using the current parameters.
These parameters are initialized as mentioned in Algorithm 2.

When converged, i.e., the difference between successive
updates is small enough or the maximum of number of
iteration is reached, the Marginal a Posteriori Mode crite-
rion (MPM) is used to obtain the segmentation map :

∀ s ∈ S0, x̂s = arg max
xs∈�

p(xs/y) (8)

The estimation of likelihood parameters �y in the case of
regularized MPPCA is presented in the next section.

3 Regularization of the Mixture of Probabilistic
Principal Component Analyzers (MPPCA)

3.1 Probabilistic Principal Component analysis (PPCA)

The PPCA is a statistical modeling of the well-known PCA,
introduced by Tipping and Bishop [18]. It is based on a latent
variable model which links each D × 1 observed vector ys

to q × 1 latent vector ts , q < D, as follows:

ys = Ats + µ + ε (9)

where A is a D × q matrix, µ the observed data mean and ε

is an isotropic Gaussian noise, i.e., N (0, σ 2 I ), I being the
D × D identity matrix.

Thus, the probability distribution of ys given ts is :

P(ys/ts) = N (ys; Ats + µ, σ 2 I ) (10)

Choosing Gaussian prior for ts , i.e., :

p(ts) = (2π)
−d
2 exp

{
−1

2
ts

t ts

}
(11)

the marginal distribution of ys is:

P(ys) = N (ys;µ, C) (12)

with C = σ 2 I + AAt is a D × D matrix [6]. Bayes rule gives
the a posteriori probability of ts [6]:

p(ts/ys) = N (ts; M−1 At (ys − µ), M−1) (13)

where M = σ 2 I − At A is a q × q matrix.
The maximization of the data log-likelihood L = ∑

s∈S0

ln{p(ys)} gives the following parameter estimators [6]:

µ̂ =
∑

s∈S0 ys

card(S0)

σ̂ 2 = 1

D − q

D∑

j=q+1

λ j (14)

Â = Uq(�q − σ 2 I )
1
2 R.

where λ j are the eigenvalues of the data covariance matrix
	 = 1

card(S0)

∑
s∈S0 (ys − µ)(ys − µ)t given in descend-

ing order (λ1 ≥ · · · ≥ λq ), �q is a diagonal matrix of the
q largest eigenvalues, Uq the matrix of the corresponding
eigenvectors, and R is an arbitrary orthogonal rotation matrix.
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Algorithm 1 Two passes on the quadtree for posterior computation given HMT parameters {�x ,�y}.
• Evaluation of the partial posterior marginals at the bottom of the quadtree :

∀s ∈ S0, P(xs = ωi /ys++ ) = P(xs = ωi /ys) = P(xs = ωi )P(ys/xs = ωi )∑
ω j

P(xs = ω j )P(ys/xs = ω j )
,

where P(xs = ωi ) is recursively evaluated through a top-down pass, given the prior probability P(xr = ωi ) = πi as follows :
for n = R − 1, · · · , 0 do

for all s ∈ Sn do
P(xs = ωi ) = ∑

ω j
P(xs = ωi /xs− = ω j )P(xs− = ω j )

end for
end for.
• Upward pass :
for n = 1, · · · , R do

for all s ∈ Sn do
P(xs = ωi /ys++ ) = 1

Z P(xs = ωi )
∏

t∈s+
∑

ω j

ai j P(xt =ω j /yt++ )

P(xt =ω j )

end for
end for
where ai j = P(xt = ω j /xt− = ωi ) is the parent/child transition probability
and Z is a normalizing factor such that

∑
ωi

P(xs = ωi /ys++ ) = 1. Note that at the top of quadtree we obtain P(xr = ωi /y)

• Downward pass :
for n = R − 1, · · · , 0 do

for all s ∈ Sn do

P(xs = ω j , xs− = ωi /y) = P(xs− = ωi /y)
P(xs = ω j /ys++ )ai j P(xs− = ωi )/P(xs = ω j )∑
ωl

P(xs = ωl/ys++ )ail P(xs− = ωi )/P(xs = ωl )
,

P(xs = ω j /y) =
∑

ωi

P(xs = ω j , xs− = ωi /y)

end for
end for

The sum
∑D

j=q+1 λ j represents the squared error of the
approximation of D-dimensional vector ys by ts on the
q-dimensional space, q ≤ D. Thus, it can be efficiently used
to estimate the local dimension q.

3.2 Mixture of Probabilistic Principal Component
Analyzers (MPPCA)

The main difficulty with PPCA (or PCA) algorithm is that
it considers the observed data distribution as a multi-variate
Gaussian (Eq. 12) which masks all local structures present
in the data. Taking into account this drawback, Tipping and
Bishop [6] introduced the mixture of Probabilistic Princi-
pal Component Analyzers (MPPCA) to model complex data
structures as a mixture of local PPCA.

For a K component MPPCA, the observations are shared
by K clusters (i.e., classes) each one spanned by a local
PPCA. Given this model, the distribution of the observations
is

P(ys) =
K∑

i=1


i P(ys/xs = wi ) (15)

where the local PPCA corresponding to the classe ωi is char-
acterized by the mean µi , the variance σ 2

i , the projection
matrix Ai and the prior 
i .

Note that in this formulation the prior is the same for
all s ∈ S0 and thus no information about the neighborhood
is taken into account when classifying ys , whereas the data
are organized on a regular lattice. We think that taking into
account the data topology during the segmentation step will
be of great importance.

The a posteriori responsibility of the component i for gen-
erating the vector ys is given by :

ϒsi = P(xs = wi/ys) = P(ys/xs = wi )
i

P(ys)
(16)

The EM algorithm is used to iteratively estimate the mixture
parameters [6] :


̂i = 1

card(S0)

∑

s∈S0

ϒsi (17)

µ̂i =
∑

s∈S0 ϒsi ys∑
s∈S0 ϒsi

(18)

and Âi et σ̂ 2
i are given, in the same way of Eq. 14, by eigen

decomposition of the a posteriori responsibility-weighted
covariance matrix:

	i =
∑

s∈S0 ϒsi (ys − µ̂i )(yn − µ̂i )
t

∑
s∈S0 ϒsi

(19)
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The MPPCA is a powerful well-formulated tool to capture
data local structures in the D-dimensional space, even if
the dimensionality reaches large values. However, its use
in multi-component images segmentation gives no smooth
maps because no information about observation location in
the image is taken into account in this modeling : one infers
each data in a blind way. In the next subsection we propose a
new method linking the MPPCA advantages and HMT regu-
larization properties to segment high-dimensional data cube.

3.3 Regularized mixture of Probabilistic Principal
Component Analyzers

We integrate MPPCA model by imposing a Markov con-
straints via the quad-tree modeling. The observation proba-
bility becomes :

P(ys) =
K∑

i=1

P(xs = ωi )P(ys/xs = ωi ) (20)

where X is a Markov tree (Eq. 3) and each class wi is spanned
by a local PPCA. In this way the likelihood P(ys/xs = ωi ) is
computed as the likelihood of ys w.r.t. the local PPCA corre-
sponding to the class ωi . As Eq. 12 suggests, this likelihood
is given by:

P(ys/xs = ωi ) = N (ys;µi , Ci ) (21)

The matrix Ci is obtained in analog manner to Eq. 14 by
eigen-decomposition of the weighted covariance matrix

	i =
∑

s∈S0 P(xs = ωi/y)(ys − µ̂i )(ys − µ̂i )
t

∑
s∈S0 P(xs = ωi/y)

(22)

where

µ̂i =
∑

s∈S0 P(xs = ωi/y)ys∑
s∈S0 P(xs = ωi/y)

(23)

The estimation of the a priori parameter remains the same
as in the classical quad-tree Eq. 7. The whole algorithm is
given in Algorithm 2.

4 Comparison with the multi-variate Gaussian

Actually, Regularized MPPCA model is equivalent to use
multi-variate Gaussian for the data driven term (Eq. 21).
However, it brings two main advantages :

1. Less parameters for the covariance matrix : the covari-
ance matrix of a D- dimensional multivariate Gaussian
exhibits D(D + 1)/2 independent parameters, while the
covariance matrix Ci = σ 2

i I + Ai At
i (Eq. 21) presents

only D qi + 1 − qi (qi − 1)/2 independent parameters,
where qi is the reduced dimensionality of the local PPCA
and qi (qi − 1)/2 corresponds the number of parameters

Algorithm 2 Regularized MPPCA procedure
• Computation of an initial segmentation map, using K-means algo-
rithm for example, and estimation of the means and variances within
each class (�[0]

y ).

• Initialization of the prior parameters �
[0]
x :{

πi = 1/K , i = 1, · · · , K
aii = 3/4 and ai j = 1/4(K − 1); i, j = 1, · · · , K

• c=1
repeat

• Perform a two passes on the quadtree (Algorithm 1) using
{�[c]

x ,�
[c]
y }.

• Compute {�[c+1]
x ,�

[c+1]
y } : Eq.7, Eq. 23, Eq. 22 and Eq. 14.

• c=c+1
until the difference between {�[c]

x ,�
[c]
y } and {�[c+1]

x ,�
[c+1]
y } is small

enough or the maximum number of iterations is reached
• Obtain the segmentation map using Eq. 8.

required to specify the rotation Ri associated to Ai

(Eq. 14). Thus, the number of parameters depends on
qi : a general Gaussian is recovered for qi = D − 1 and
isotropic Gaussian for qi = 0 [6].

2. Additional informations : the Regularized MPPCA
exhibits two kind of latent variables which are the label
process X and the hidden vectors ti

s , i = 1, . . . , K , cor-
responding to the projection of the observations Ys using
the local PPCAs (Eq. 9). Thus, we may obtain a set of
N = ∑K

i=1 qi representative images instead of the D
original ones where the parameter qi equals to the num-
ber of dominant eigen values of the i th local PPCA.
As a consequence, when the original images are multi-
spectral ones, the eigen vectors of the PPCA associated
with a given class, are eigen spectra which represent a
signature of this class. This is very useful when the clas-
ses correspond to physical structures like astronomical
objects, lands or water.

5 Experiments

Synthetic images

To test our approach, we generated three sets of three
256 × 256 correlated images each, with constant correlation
ratio ρ = 0.8. Each image contains two Gaussian classes
representing a geometric shape and background as detailed

Table 1 Parameters of the two Gaussian classes

Class 1 Class 2

µ1 σ1 µ2 σ2

Band 1 7.5 1 8.5 1

Band 2 7.5 1 8.5 1

Band 3 8 1 8 1

The third band is completely corrupted with the noise
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in Table 1. Thus, we obtain 9 images to segment (Fig. 2,
top). The segmentation maps with four classes using the
maximum likelihood classifier based on MPPCA and regu-
larized MPPCA are shown in the bottom of Fig. 2. We choose
two for the reduced dimensionality for each local PPCA for
both MPPCA and our technique. It is very easy to note the
effect of the Markov regularization (on the right) compared
to the maximum likelihood classification (on the left). More
than 98% of the pixels are correctly classified.

We also observe that the contours of the rectangle form
are very good exhibited in the segmentation map (Fig. 2,
bottom right). This is due to the well-known bloc effect
drawback of the Hidden Markov Tree (HMT). By construc-
tion (each node has four children), it favorites the rectangu-
lar forms. Many solutions have been proposed to overcome
this problem [19–21]. However, in our case comparing the
obtained performances and additional complexity induced

by the solutions, we found that the use of the HMT is a good
compromise. If for a specific application the performance
decreases, the a priori may be changed by a more appropri-
ate one like Hidden Markov Chain or MRF.

Remote sensing images

We also applied our algorithm on two sets of real remote sens-
ing images of Hartheim area (near Strasbourg city), each one
of 16 bands and of size 256 × 256 (wavelengths between
477 and 2,425 nm), shown in Figs. 3 and 4. The images are
obtained from the hyperspectral HyMap sensor, resolution
at soil 4m. Each set of images includes one strongly noised
band, number 9. We perform 10-class segmentation using
regularized MPPCA. The results are presented at the bottom
of Figs. 3 and 4. In the map of Fig. 3, we clearly distinguish
the Rhine river on the right top, the road in the bottom left

Fig. 2 Synthetic images of size 256 × 256 on the top. Each 3 images of
the same line are simulated using the parameter of Table 1. On the bot-
tom, segmentation map obtained with the MPPCA (left) is very noisy,

whereas the map obtained with the proposed technique (right) is well
regularized (1.2 % of misclassification)
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Fig. 3 Segmentation on 10 classes of remote sensing images using regularized MPPCA : 16 bands of size 256 × 256 of Hartheim area (near
Strasbourg city), with wavelengths between 477 and 2,425 nm

corner, the different crop fields on the left side and vegetation
on the right side. Similar remarks may be pointed for the map
of Fig. 4. We distinguish easily the central road, the vegeta-

tion on the right side, the crop fields on the left side and few
ponds, especially on the top and the bottom right. In both
simulations, we choose 3 as reduced dimensionality for each
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Fig. 4 Segmentation on 10 classes of remote sensing images using regularized MPPCA : 16 bands of size 256 × 256 of Hartheim area (near
Strasbourg city), with wavelengths between 477 and 2,425 nm

local PPCA. Therefore, only 47 independent parameters are
needed for the covariance matrix of each class instead of 136
when the classical multi-variate Gaussian density is used.

This significant reduction is the success key to the method to
transcend Hugh’s phenomenon. The computation time, using
non-optimized matlab code implementation and executed on
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Fig. 5 Label map obtained with MPPCA-Markovian quadtree algo-
rithm applied simultaneously on the 16 Mueller images. Five classes
are obtained, each of them in a specific color. One observes that in
spite of strong noise in the different channels, the regularized MPPCA

algorithm manages correctly the various objects within the scene. The
problem of analyzing polarization-encoded images and to explore the
potential of this information for classification issues is now under study

a bi-processor Pentium 4 with 1.4 GHz frequency and 3 GB
memory, is less then 2 mn for each iteration. A few iterations
are needed to convergence (approximatively between three
and six, therefore computation time is less then 15 mn for
data cube of size 256 × 256×16 wavelength and 10 classes.

Stokes–Mueller imagery

The method proposed in this paper can be used in many other
applications where multi-component (and not only multi-

wavelength) images are available. For example, we tested our
approach on another framework, in optical imaging, where
the Stokes–Mueller formalism allows the definition of light
polarization parameters in terms of real quadratic observ-
ables (intensities) which are directly sensed by CCD detec-
tors. This allows extending classical intensity-wise imaging
systems to acquire polarization parameters images through
the use of Polarization State Modulators. Although many
such systems using different polarization modulation tech-
niques have been built in recent years for many application
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areas ranging from metrology to biomedical imaging, remote
sensing the analysis of Stokes–Mueller multi-component
images remains difficult [22]. Nevertheless, the relevance of
polarization-encoded images that comes from the rich set of
physical information they carry about the local nature of the
target incited us to test this new method, taking into account
both spatial regularization and high-dimensional data in the
segmentation process [22]. Hence, polarization-sensitive
imaging systems are emerging as a very attractive vision
technique that provides insightful understanding of the ele-
ments that constitute the object based on their polarimetric
properties, i.e., birefringence, dichroism, depolarizing prop-
erties, transmittances. This is particularly useful among other
applications to probe the constituent elements organization
in biological tissues and to detect defects or outliers in optical
elements. In the framework of Mueller parameters imaging,
polarization-encoded images have 16 channels which make
physical interpretation of such multi-dimensional structures
hard to grasp at once. Furthermore, the information content
is intricately combined in the parameters channels which
involves the need for a proper tool that allows the analy-
sis and understanding of this kind of images. Figure 5 shows
real measured images acquired by a full Mueller imaging
polarimeter. The used object to carry out these measurements
consists of two dichroic patches (Polaroid) and a cellophane
shape contacted on a diffusing glass slide with a drop of water.
The overall mount was backlight illuminated by a polarized
beam, and the intensity images were sensed by a four prob-
ing states rotating quarter-wave-plate analyzer in front of a
12-bits CCD scientific camera. We note that the different
orientations were given to transmission axes of the Polaroid
shapes to obtain different signatures at the output.

We perform a 5 classes classification using the proposed
method. One observes that in spite of strong noise in the
different channels, the regularized MPPCA algorithm
manages correctly the various objects within the scene. The
problem of analyzing polarization-encoded images and to
explore the potential of this information for classification
issues is now under study.

6 Conclusion

A new Markov regularization of the Mixture of Probabilistic
Principal Component Analyzers (MPPCA) for multi-
component image joint reduction/segmentation has been
presented in this paper. This method intrinsically avoided
the well-known curse of dimensionality when handling large
number of components. The model parameter estimation is
performed using the EM algorithm. The results presented on
synthetic image prove the interest to link MPPCA advantages
and HMT regularization properties to segment high-
dimensional data cube. Results presented on real images
in the framework of remote sensing and Mueller imagery

are very satisfactory and show the high potential of the pro-
posed method. In comparison with a Maximum likelihood
classification process based on MPPCA, our classification
shows clearly the benefit of the smoothing effect of the Mar-
kov regularization. This method is promising and can be eas-
ily extended to other mixtures of latent variable models when
a statistical modeling is available. Thus, one may use the
regularized mixture of factor analyzers based on the work
of Ghahramani et al. [9], or the regularized mixture inde-
pendent component analyzers based on the work of Roberts
et al. [23]. The method may also be extended to other Markov
models such as Hidden Markov Chain and Markov Random
Field depending on the on hand application.
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