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ABSTRACT

The paper introduces a novel detection and tracking system that pro-
vides both frame-view and world-coordinate human location infor-
mation, based on video from multiple synchronized and calibrated
cameras with overlapping fields of view. The system is developed
and evaluated for the specific scenario of a seminar lecturer present-
ing in front of an audience inside a “smart room”, its aim being to
track the lecturer’s head centroid in the three-dimensional (3D) space
and also yield two-dimensional (2D) face information in the avail-
able camera views. The proposed approach is primarily based on
a statistical appearance model of human faces by means of well-
known AdaBoost-like face detectors, extended to address the head
pose variation observed in the smart room scenario of interest. The
appearance module is complemented by two novel components and
assisted by a simple tracking drift detection mechanism. The first
component of interest is the initialization module, which employs
a spatio-temporal dynamic programming approach with appropriate
penalty functions to obtain optimal 3D location hypotheses. The sec-
ond is an adaptive subspace learning based 2D tracking scheme with
anovel forgetting mechanism, introduced as a means to reduce track-
ing drift and increase robustness to illumination and head pose vari-
ation. System performance is benchmarked on an extensive database
of realistic human interaction in the lecture smart room scenario, col-
lected as part of the European integrated project “CHIL”. The system
consistently achieves excellent tracking precision, with a 3D mean
tracking error of less than 16 cm, and is demonstrated to outperform
four alternative tracking schemes. Furthermore, the proposed system
performs relatively well in detecting frontal and near-frontal faces in
the available frame views.

Index Terms— Person tracking, face detection, face tracking,
multi-camera tracking, dynamic programming, adaptive subspace
tracking, mean-shift tracking, AdaBoost, background subtraction,
triangulation, lecture data, smart rooms.

1. INTRODUCTION

Visual detection and tracking of humans is an important problem
with numerous applications that range from automated surveillance
to interfaces for human-computer interaction. In general, robust hu-
man tracking in complex scenes is challenging. In some circum-
stances however, multiple time-synchronous and calibrated camera
sensors with overlapping fields of view may be available, from which
both frame-view and world-coordinate human location information
can be derived. In such scenarios, efficiently combining frame-level
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appearance-based human detection with temporal and spatial con-
straints constitutes a viable approach that can simultaneously pro-
vide both desired types of location information with improved accu-
racy, while avoiding reliance on any form of background modeling
or motion estimation. This paper introduces a novel human tracking
vision system employing these principles, developed and evaluated
for the specific scenario of tracking a seminar lecturer presenting
inside a “smart room” in front of an audience.

This scenario is of central focus in the European integrated
project “CHIL” (“Computers in the Human Interaction Loop” [1]).
In CHIL, smart rooms have been set up, equipped with multiple au-
dio and visual sensors that include a minimum of four calibrated
and time-synchronous cameras with highly overlapping fields of
view, located at the room corners. Numerous seminars have been
recorded in such rooms providing a large multi-sensory and multi-
modal database of real human interaction [2]. The resulting CHIL
corpus, annotated with a wealth of multimodal information, has been
crucial to the development and evaluation of a multitude of technolo-
gies for perception of humans in the lecture scenario of interest [3,4].
Prominent among such technologies is the task of locating the lec-
turer’s head position, both in the three-dimensional (3D) space — in
the form of head centroid world coordinates, as well as in the avail-
able two-dimensional (2D) frame views as bounding boxes of
visible faces [5]. Such location information can be further utilized
in support of numerous audio-visual perception technologies: For
example, 2D face information is useful for person identification [6],
whereas 3D location coordinates can be employed in acoustic beam-
forming for far-field automatic speech recognition [7], as well as
to obtain close-up presenter views based on steerable pan-tilt-zoom
cameras [8, 9] or camera selection schemes [10]. The views can
further assist identification [11] and audio-visual speech technolo-
gies [12], among others, with obvious utility in lecture indexing and
understanding of the interaction.

It becomes clear that for the CHIL lecture scenario described
above a visual system that combines face detection, tracking, and
multi-camera processing is both feasible and desirable. This pa-
per introduces such a system, developed to provide both 2D-face
and 3D-head location information of a single person (the lecturer) in
CHIL seminars. Like most 3D approaches, the proposed algorithm
consists of a sequence of 3D (re-)initialization and tracking phases,
with a tracking drift detection mechanism controlling the switch be-
tween the two. Similarly to other works, all its stages depend on 2D
information from separate views to obtain 3D location world coor-
dinates based on camera calibration [13].

However, the proposed system deviates from other research ef-
forts that focus on the 2D or 3D tracking problems alone, in that
it jointly considers them within a single framework, in order to
improve both 2D-face and 3D-head localization accuracy. This is
accomplished by relying heavily on the appearance model of the
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Fig. 1. Overview of the CHIL lecturer video tracking task. Schematic diagrams of the smart rooms located at two CHIL project partners: (a)
Universitit Karlsruhe (UKA), Germany, and (b) Istituto Trentino di Cultura (ITC), Italy. The CHIL lecture corpus used in our experiments
for single-person (lecturer) tracking, has been collected at these two sites.

tracked object — here the lecturer’s head, as viewed in 2D by the
available cameras. For this purpose, off-the-shelf statistical classi-
fiers of human faces are utilized, in particular AdaBoost-like face
detectors, appropriately extended to address the head pose variation
observed in the smart room scenario. As a result, in the developed
system, 2D face detection plays a pivotal role in 3D head tracking,
being employed in system initialization and in detecting possible
tracking drift. Similarly, 3D tracking determines the 2D frame re-
gions where a face detector may be subsequently applied. An addi-
tional differentiator of the proposed system is that no form of mo-
tion estimation or background modeling is needed. The algorithm
therefore remains robust to the unpredictability of motion, occlu-
sion, and background changes in the heavily cluttered CHIL smart
rooms. This is in contrast to all alternative tracking systems in the
literature (to our knowledge) that address the smart room scenario of
interest [14-23].

Two additional components in the proposed system complement
the appearance module, implementing a number of novel ideas: One
is the initialization module that employs a spatio-temporal dynamic
programming approach to obtain optimal 3D location hypotheses.
For this purpose, while scoring candidate hypotheses, the adopted
implementation penalizes not only large trajectory discontinuities
over time, but also accounts for hypothesis appearance similarity
between camera views. The second component of interest is a 2D
tracking module, used as part of the 3D tracking phase. This com-
ponent utilizes an adaptive subspace learning based scheme [24]. A
novel forgetting mechanism is introduced into this technique, as a
means to reduce tracking drift and increase robustness to illumina-
tion and head pose variation. Furthermore, this tracking is applied
on only two of the four available camera views, selected based on
the initialization component. This of course results in significant al-
gorithmic speed-up during 3D tracking.

Finally, the extensive benchmarking of the proposed approach
constitutes an important aspect of the paper, breaking away from the
toy-problem or small-scale evaluation paradigm that often accompa-
nies other works in the area. In particular, the developed system is
benchmarked on all three parts of the CHIL lecture corpus. This is
a large database that exhibits significant data variability, with no ar-
tificially imposed constraints in the human interaction and behavior
patterns, thus allowing meaningful technology development, evalua-
tion, and algorithmic comparisons [2, 5]. Furthermore, the proposed
system is compared to a number of 3D tracking methods, ranging

from small algorithmic variations of it to significantly different ap-
proaches that contain motion estimation or background subtraction
components [23,25].

The rest of the paper is organized as follows: Section 2 briefly
discusses literature work relevant to this paper. Section 3 presents a
more detailed overview of the tracking task and introduces the pro-
posed system. An in-depth presentation of its components follows in
Section 4. Section 5 describes alternative systems considered in our
experiments on CHIL lecture data, which are subsequently presented
in Section 6. Finally, a brief summary and discussion in Section 7
conclude the paper.

2. RELATED WORK

Much work has been devoted to the core problems of human de-
tection and tracking that constitute the focus of this paper. For this
purpose, human body models are often used, ranging from simplistic
blob appearance or cylindrical shape models [26] to more complex
articulated ones [27-29]. An alternative approach to these problems
is detecting and tracking human faces.

For face detection, machine learning based techniques are
widely considered as the most effective, for example based on neu-
ral networks [30], support vector machines [31], network of linear
units [32], or the AdaBoost approach [33] that has received much at-
tention in recent years. Alternative methods using traditional image
processing algorithms based on color and edge information [34], or
optimization to match learned shape and/or appearance to data [35]
have also been shown to achieve good performance. Many such
techniques can be further extended to handle detecting faces under
varying head pose, as for example in [36,37], where pose-based ap-
pearance frameworks are proposed, or the multi-pose face detection
work of Li et al. [38], where “FloatBoost”, an AdaBoost variant, is
employed. The latter approach is used in our proposed system.

Similarly, for tracking faces, various target representations have
been used in the literature, such as parameterized shapes [39], color
distributions [40], image templates [41] and the eigenspace ap-
proach [42], to name a few. Tracking with fixed representations
however is not reliable over long durations, and a successful tracker
needs to allow appropriate model adaptation. Not surprisingly, a
number of tracking methods have been developed to allow such
adaptation online, for example the EM-algorithm based technique
of [43], the feature selection mechanism of [44], and the paramet-



ric statistical appearance modeling technique in [45]. An interest-
ing non-parametric approach appears in Lim et al. [24], where the
appearance subspace is learned online by an efficient sequential al-
gorithm for principal component analysis (PCA), updated with the
incoming data vectors. An extension of this technique is employed
in our proposed system.

In general however, real interaction scenarios, such as in the
CHIL domain, present significant challenges to most face detec-
tion and tracking algorithms, for example partially occluded and
low-resolution faces, as well as lighting and head-pose variations.
These difficulties can often be successfully addressed, only if ad-
ditional information is available in the form of multi-camera in-
put, in order to reduce spatial uncertainty in the scene [46]. Natu-
rally, some researchers have begun to exploit multiple camera views
where they are available, and several tracking systems attempt to
fuse information from the available sensors to yield 3D tracking re-
sults [9,47-53], using for example Kalman filters [54], particle fil-
ters [55,56], or just scene and camera geometry [46].

The above ideas have already found their way into a number
of papers that address the lecturer tracking problem in the CHIL
scenario. In 2D face tracking work reported in [14, 15], statistical
face detection is assisted by either a motion model or a combina-
tion of foreground-background segmentation [57] and 2D Kalman
filtering. However, neither system utilizes 3D information. A few
other works aim to provide 3D head information in the CHIL sce-
nario of interest [16-23]. These differ from our proposed system
in various aspects, most importantly that they do not focus directly
on the 2D face appearance information (with the exception of [23]),
but rather model and track larger parts of the human body. For this
purpose, they all use background modeling [16-20] or motion in-
formation [21-23]. The extracted camera view information is then
combined across views by employing either triangulation-based, de-
cision fusion mechanisms [16, 20, 22, 23], or likelihood fusion by
means of particle filters [17,19,21]. An alternative technique appears
in [58], where histogram features are directly combined across cam-
era views within a 3D kernel based tracking framework — a process
akin to feature fusion. That system however lacks an initialization
component.

3. TASK AND SYSTEM OVERVIEW

As already mentioned in the Introduction, the proposed tracking sys-
tem constitutes a joint face- and head-tracking approach, developed
to address the CHIL lecturer tracking task. In the following, we pro-
vide a brief overview of the task, as well as a summary of the pro-

(b)
Fig. 2. Examples of synchronous four camera views of the (a) UKA and (b) ITC data, part of the CHIL lecture corpus.

posed approach. A detailed presentation of the system components
follows in Section 4.

3.1. Overview of the Tracking Task

In the CHIL scenario of interest, a standing subject presents a lecture
in front of a small (mostly sitting) audience. The interaction occurs
inside a smart room (typically of less than 7.5mx6mx3m in size)
equipped with a variety of audio and visual sensors. Among them
are four synchronized calibrated cameras with relatively wide-angle
and overlapping fields of view, located near the room corners by the
ceiling. The cameras are set in such a fashion as to ensure that at
least two of them capture the lecturer’s head at any given time. In
practice, in most instants, two cameras capture lecturer head views
that are deemed as “visible faces”, namely occasions where the nose
and at least one eye are visible, with head poses obviously ranging
from frontal to profile. Schematics of two such smart rooms with
approximate camera locations are depicted in Fig. 1, and example
frames from the four corner cameras in these two rooms are shown
in Fig. 2. Notice the relatively constrained region where the lecturer
moves, typically close to the whiteboard or projection screen, and
limited by furniture and the sitting audience members.

The proposed system jointly addresses two tasks in the above
scenario: The first is automatic lecturer localization in the 3D space.
Of particular interest is clearly head centroid localization, as dis-
cussed in the Introduction. The second task concerns the lecturer
face detection and tracking in the four available 2D camera views.
The task has been defined in the CHIL project as estimating the
bounding box of the “visible faces” of the lecturer in the four camera
views, aiming to provide far-field visual recognition of the lecturer’s
identity.

Both head and face tracking tasks are extremely difficult in
this scenario, due to the unconstrained, unstaged data. The smart
rooms happen to also be computer labs in operation, with people
frequently entering or moving around during the seminars. Occlu-
sions are therefore common. In addition, lighting variations affect
the lecturer’s visual appearance, due to movement particularly into
the projector’s beam. Furthermore, the camera resolution is rela-
tively small (typically 640x480 pixels or slightly larger), hence in-
sufficient to cover far-lying smart room space in high resolution; in
particular, faces often occupy less than 15x 15 pixels in the camera
frame views. Finally, the lecturer’s varying spatial head orientation
and position obviously complicate 2D detection and tracking.

To assist in these tasks, the CHIL lecture corpus provides a sig-
nificant amount of development data, collected in the smart rooms
and scenario of interest, that has been manually annotated with both
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2D visible face bounding boxes and, by triangulation, 3D head posi-
tions [2,5]. Details of the database and available labels are discussed
in Section 6.1. Here, it suffices to mention that such data allow the
training of statistical face models and to deduce constraints (or even
models) of the lecturer’s movements.

3.2. Overview of the 3D Head Localization Subsystem

The overview diagram of the developed 3D head tracking system is
given in Fig. 3(a). It basically consists of an initialization and a track-
ing component, with tracking drift detection controlling the switch
between these two modes. For its initialization, multi-pose face de-
tectors are first applied to all four camera views in the smart room
(also referred to in this work as a “quad-frame” — see Fig. 2). Details
are provided in Section 4.4. Subsequently, spatio-temporal informa-
tion of the face detection results over ten consecutive quad-frames is
integrated within a dynamic programming (DP) framework, to pro-
vide robust initialization. Details are described in Section 4.1 (see
also Fig. 3(b)). If the optimal DP trajectory is accepted as a true
object, a 2D tracking component kicks in, operating independently
in two only camera views, which are selected among the four avail-
able views based on the DP result. Details of the tracking algorithm,
which is based on online adaptive subspace learning, are presented
in Section 4.2. Notice that as long as the DP trajectory is not accept-
able, the initialization process is repeated with a shift of five frames.
In such a case, a default or no 3D location can be returned. Finally,
an important aspect of the system is the re-initialization decision, or
equivalently, the drift detection. This is described in Section 4.3, and
it is based on a combination of local face detection and calibration-
based triangulation to test the consistency of independent tracking in
the two camera views (selected based on the DP results).

3.3. Overview of the 2D Face Localization Subsystem

In the developed system, 2D face localization is performed based on
the 3D head tracking result. Such result provides the approximate
region within the 2D frame views, where a visible face could be
present, in the following manner: As mentioned above (and further
explained in Sections 4.1 and 4.2), the 3D head tracking system uses
2D subspace tracking on two only camera views, selected based on
the algorithm initialization stage. For these two camera views, the
expected face location is therefore immediately available. For the
remaining two camera views, the system considers the projection

of the 3D head position estimate (by employing camera calibration
information) to obtain an estimate of the head’s 2D location in the
image frames.

Following this step, multi-pose face detection (see Section 4.4)
is applied around the estimated head center in each camera view. If
the face detector locates a face, this is accepted. If there is no face
detection result, then one of the following two cases occurs: (a) If the
camera view in question is one of the two views that have been used
in tracking at that instant, the raw 2D tracking result (i.e., the tracked
face box) is returned as the face detection output. (b) If however the
camera is not a 2D tracking view, no face output is produced. The
above face detection strategy has been selected after conducting a
number of experiments on the CHIL development data, as described
in Section 6.5.

4. SYSTEM COMPONENTS

We now proceed to describe the developed system’s main algorith-
mic components in detail. In particular, we first concentrate on the
initialization, tracking and drift detection modules of the 3D head
tracking subsystem, as depicted in Fig. 3(a). In addition to these,
prominent throughout the system is the face detection module, that
plays a crucial role in initialization and drift detection, as well as in
the 2D localization subsystem discussed in Section 3.3. Its presenta-
tion is deferred to the end of this section.

Throughout the algorithmic overview, the following notation
will be used: H® will denote a hypothesis at instant ¢ concern-
ing the lecturer’s head centroid location in 3D world coordinates
(z¢, yt, 2¢). Similarly, R will represent a hypothesized “visible
face” at instant ¢ in camera view ¢ € C, where C is the set of avail-
able cameras (here, four). Face hypothesis h contains 2D informa-
tion about the face bounding box, (u, v, Au, Av), namely 2D center
coordinates, height, and width. The collection of pixels within it will
be denoted by h.

4.1. Spatio-Temporal 3D Initialization

Robust initialization is a crucial component in every tracking
scheme. In the proposed system, initialization is driven by the face
detection module described in detail in Section 4.4. In particular,
trained Adaboost-like multi-pose face detectors are applied on all
four camera views (over the entire quad-frame) and over all time
instants during the initialization phase. However, the resulting de-
tected faces prove insufficient to lead to robust 3D initialization by
triangulation alone [46]. This is due to high rates of false positives
and missed faces, as discussed in Section 4.4 and quantified in the
experiments (Section 6.5) — see also Fig. 4.

Given the challenging nature of face detection in the CHIL sce-
nario, the developed system seeks to utilize additional information,
in the form of temporal (video sequences) and spatial (multiple cam-
era views) context. The resulting algorithm integrates both temporal
and spatial information from frame-level face detection results into
a dynamic programming (DP) framework, schematically depicted in
Fig. 3(b). In summary, following face detection, 3D hypotheses of
the presenter’s head location are generated using the calibration in-
formation, based on the spatial consistency of the detection result
from different camera views. Then, DP applied on the results over
ten consecutive quad-frames is used to search for the optimal tra-
jectory of the presenter’s head centroid in the 3D space, based on
appropriately defined penalty functions. If the optimal trajectory is
accepted compared to a threshold, the result is fed into the tracking
component described in Section 4.2; otherwise the process is iterated



Fig. 4. Spatio-temporal face detection depicted at two instants, for all four camera views. Upper-row: Based on frame-level FloatBoost face
detection, with no spatial and temporal information utilized. Lower-row: After the proposed dynamic programming. Notice that in the latter
case, single faces (frontal or profile) are only depicted for the two selected camera views that correspond to the optimal hypothesis.

with a five frame shift until an acceptable trajectory is determined.
An example of the proposed spatio-temporal initialization scheme
applied on CHIL lecture data is depicted in Fig. 4. Details of the
implementation follow.

4.1.1. Generating 3D Hypotheses

Assuming n; face detections per camera view, there could be up to

Z ng X n;
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candidate 3D head locations at each time instant, obtained via pair-
wise triangulation of detected face bounding box centers, using for
example the direct linear transformation (DLT) method [46]. A few
of these hypotheses can be readily rejected, for example when large
inter-ray distances of the 2D-to-3D maps are observed, or based on
collection-site specific spatial constraints. The latter can be learned
from development data, and are imposed to distinguish the lecturer
from audience members (see also Fig. 1). These constraints result in
about half of the room floor surface being allowable for the presen-
ter’s (x,y) location, whereas a 400 mm height range (1500 to 1900
mm) is imposed on the z-axis location coordinate. As a result of this
process, multiple 3D hypotheses

H = DLT (n”, n{") (1

are generated at every time instant ¢, where indexes k;, l; specify
the face hypotheses in two camera views that yield H. i(t). Hence in
this framework, each H i(t) contains not only the 3D location coordi-
nates of the hypothesized head centroid, but also indexing informa-

tion about the two camera views that generated it.

4.1.2. Trajectories of 3D Hypotheses

Following generation of a pool of 3D head centroid hypotheses at
each time instant ¢, the next step is to perform dynamic program-
ming over the temporal window of interest, in order to obtain the
optimal temporal sequence (path or trajectory) of 3D location hy-
potheses. For this purpose, two main 3D-path cost components are
employed. One is a traditional transition cost that penalizes path
discontinuities over time. An additional local cost complements it,
based on a similarity measure of the 3D hypothesis. This is intro-
duced to reward consistency among the face detection results that
generated the hypothesis via (1). As a result, a path

{H(tl) H(tz) "Hi(zn)} 2)

based on n 3D hypotheses of head centroids at times 1 < t2 <
.. < tn has a trajectory cost associated to it, given by

n—1

CYH) = t1Cp + (t—t2) Cr + Z(tm —tx) Cr +
n—1
ZC Hl(zljjl) H(tk)) + ZC (H(tk) 3)

over time interval [0, t], where t > ¢, . In (3), Cr(e]e) and Cr(e)
denote the transition and local similarity costs, respectively. In ad-
dition to those, three constant costs are introduced to account for
missing 3D hypotheses or to allow skipping unreliable ones (by es-
sentially duplicating a prior hypothesis) in some of the instants over
the temporal window of interest. The three costs, Cg, Cr, Cg are
used for this purpose at the beginning, intermediate, or ending part
of the trajectory, respectively. Additional details of the components
in (3), as well as the hypothesis search follow.



4.1.3. Local Similarity Cost

This is used to evaluate the hypothesis at the current instant on the
basis of the available camera views that generated it via (1), exploit-
ing spatial information by means of local appearance. The assump-
tion is that if the candidate hypothesis corresponds to an actual 3D
object, then the corresponding face regions in the two camera views
should have similar color histograms. The cost computation is based
on the Bhattacharyya coefficient, and is defined as (see also (1))

CL(HP) = —a > \/p(b) pp(h) | @)
b=1

where {py(h): b = 1,...,m} denotes the m-bin color histogram,
based on the face candidate pixel values h, and « is a scalar value
used in order to balance the contributions of (4) and (5) in (3).

In our implementation, p is taken to be the 30-bin histogram of
the H component of the color HSV space. Furthermore, and in order
to improve robustness, the face candidate regions in the computa-
tion of (4) are extended: Histograms are computed over rectangles
taken to be approximately double (in height only) the detected face

bounding boxes hi? and hz(,f)-

4.1.4. Transition Cost

The transition cost exploits temporal information, and it is used
to penalize non-smooth trajectories, based on the 3D distance be-
tween temporally consecutive hypotheses. The cost is specified us-
ing Gaussian diffusion, computed between 3D hypotheses H, i(t) and

HJ(.t_U, as

_ 1
Cr(HOHI ) = L10g]S| + 3 log 2

I (Hf”— H;t71))T271(H§t)7 H;tfl)) G

In our system, the covariance matrix X is set to diagonal matrix
(100,100,100), assuming that 3D hypothesis coordinates are in mm.

4.1.5. Hypothesis Search

The searching scheme employs the standard dynamic programming
approach, based on cost equation (3) — but with a few twists to bet-
ter adapt to the task at hand. Available at a given instant ¢ are a pool

of local hypotheses H, Z-(”, i = 1,...,m, and the active trajectories up

to ¢ —1, which we denote by H;t_l)

notation in (2). The latter are accompanied by scores g;tfl) that
specify the trajectory cost up to ¢ — 1, based on (3). Then, the active

hypotheses at ¢ are obtained as Hgt) = {HJSEZ._)I), H ft) }, where

, 3 = 1,...,n, extending the

i(6) = argmin (g~ + Cr (| HI™) + Co(H(") }.

..... n

with the new score ggt) being the optimal value of the above mini-
mized expression. In addition to the updated trajectories, active hy-
potheses H;tq) may remain “alive” as H;O = {H§t71), H](vtfl)}
(slight notation abuse) with a constant penalty C; added to their
score (see (3)). To speed up computations, pruning is performed
among the resulting pool of paths, by allowing at most six trajecto-
ries to be kept active at any instant ¢t. Furthermore, the scheme is
terminated at the 10*" quad video frame (tend =tinit + 10), with the
global optimal trajectory obtained by choosing the active hypothesis
with the minimum score at t = tenq .

In addition, a maximum acceptable score is defined, providing
a mechanism to reject the final hypothesis (and hence trigger a new
search) if its total cost exceeds a fixed threshold. This threshold, as
well as parameters C; =Cp =Cpg and « in (3) and (4), are tweaked
empirically, based on detection and false alarm rates on CHIL de-
velopment data. In the case that the optimal trajectory is rejected, a
five quad-frame shift is performed and the search re-initialized. The
returned optimal trajectory defines the two camera views on which
2D tracking is to commence, as discussed next.

4.2. Adaptive Subspace 2D Tracking

Following successful initialization, a 3D hypothesis is obtained as
the last element of the optimal (minimum score) spatio-temporal
path at time instant ¢, = t.,q . This hypothesis, denoted by

H") = DLT (h(, h),

contains the two face detection results and the indexing information
of the two camera views, ¢’, ¢’ € C, that generated it. Such in-
formation allows the tracking phase of the algorithm to commence.
This stage consists of two separate 2D tracking processes, running
independently and in parallel for each of these two camera views.
The 2D processes are based on an adaptive PCA subspace approach
that tracks the face bounding box within the single-camera frame se-
quence. Therefore, at each time instant ¢ > {,, the two trackers
generate face bounding boxes kY, ¢ € {¢,¢"}. The 3D head
centroid location can then be easily obtained via triangulation as
H®=DLT ( h?, hit,,)) , assuming that no tracking drift is detected
(see Section 4.3).

The motivation behind this scheme is to reduce computations by
tracking using the bare minimum of camera views (two), sufficient
for 3D triangulation, but also to do so in the specific views where
visible faces (frontal or profile) are expected. Such views contain
more discriminating information, as opposed to views that capture
the back of the lecturer’s head. In addition, they enable the verifica-
tion of whether the hypothesized tracked object is indeed a visible
face, by applying a face detector in its region. This is crucial in de-
tecting possible tracking problems (see Section 4.3). Furthermore,
the 2D tracking results may readily provide desired 2D face infor-
mation in the camera views in question, as discussed in Section 3.3).

At the heart of the proposed scheme lies the 2D PCA subspace
tracking approach. As discussed in Sections 1 and 2, adaptability
of the subspace to the observed conditions is crucial in improving
tracking robustness in the dynamic CHIL scenario, mainly due to
variations in head-pose and lighting. Such approaches have already
been proposed in the literature, for example in [24]. There, when a
new observation is obtained, the PCA subspace is updated to take
into consideration the variance contributed by the new observation.
However, the method does not provide an updating algorithm for
eliminating past observations during tracking. This poses a problem
when tracking objects over long durations, since the noise introduced
during tracking eventually could bias the PCA subspace away from
the characteristic appearance of the desired tracked object. In [59],
an L., norm subspace is fitted to the past frames incrementally by
Gramm-Schmitt orthogonalization. Though the subspace with L,
norm has the advantage of timely incorporating observation novel-
ties into the subspace representation [59], it runs the risk of tracking
drift due to its lack of robustness to noise and outliers. PCA on the
other hand offers freedom to perform dimensionality reduction and
thus ignore tracking noise and assist outlier rejection based on re-
construction error [42]. Therefore, the proposed system adopts the



incremental PCA subspace learning approach. In particular, Hall’s
mechanism [60] is employed to incrementally update the PCA sub-
space given new observations. In addition, our proposed system also
allows subspace adjustment, by eliminating distant past observations
in the subspace. This introduces a forgetting mechanism that is ab-
sent in Lim’s approach [24].

The proposed 2D adaptive subspace tracking scheme consists
of three steps, at each time instant (frame) ¢, as discussed next. The
presentation refers to faces, but of course the scheme is more general.

(a) Localization: The first step is to estimate the new face location
at instant ¢, b, based on the prior face location, R*~V), and the
available PCA subspace of face appearance at ¢ —1 (for simplicity,
we drop the camera index in the notation). Let us denote the cur-
rent PCA subspace by (171('571), Ut=1 At-D, N<t71)), with its
elements representing, respectively, the mean vector of face appear-
ances, the matrices of retained eigenvectors and eigenvalues, and the
current number of observations modeled. The new face location at ¢
is then obtained as

A" = arg min ||[(h—h""V) — gDyt T (h_n) |,
he/\/(h(‘*l))
(6

where the minimization occurs over a set of candidate face bounding
boxes in the “neighborhood” A'(h*~1)) of the previous face. Note
that in (6), the mimized functional corresponds to the distance from
the PCA space of the vectors of candidate face pixels, h, within the
corresponding face bounding boxes h .

(b) New sample inclusion into subspace: Once the new face “ob-
servation” h'*) becomes available, it’s pixel values vector h® gets
recruited into the PCA subspace. The subspace can be adapted in an
incremental fashion, as described in Alg. 1 of Fig. 5, thus avoiding
recomputing the subspace from all its samples.

(c) Old sample exclusion from subspace: Following inclusion of the
new observation, the PCA subspace receives a second update by ex-
cluding a past distant observation vector h®*~™)_ This forgetting
mechanism is performed as described in Alg. 2 of Fig. 5, avoiding re-
calculation of the entire subspace. Notice that in contrast to step (b),
the process occurs only once the subspace reaches its “steady state”
of containing N B=m samples, or equivalently for ¢t > t, +m.

In our particular implementation, the proposed system employs
the most recent m = 50 frame observations to construct the PCA
subspace. Hence, following tracking initialization, the forgetting
mechanism does not commence until after 50 frames are observed.
For this initial duration, the algorithm remains identical to [24]. The
learned subspace has a dimensionality of up to 15, down from a nor-
malized 20x20-pixel data “template” (the un-normalized template
size depends on the detected face at the end of the initialization step).
Finally, the optimization in (6) occurs over 169 candidate faces of
constant size (equal to the detected face size at initialization), with
their centers located at equally spaced points within a square four
times in size of the initialized face actual size. Notice therefore
that the tracking occurs in constant scale, with only the face loca-
tion sought.

4.3. Tracking Drift Detection in 3D

An important aspect of the system is the re-initialization decision,
or equivalently, tracking drift detection on basis of the 2D indepen-
dent tracking results in the two selected camera views. This is based
on a combination of local face detection and calibration-based trian-
gulation to test the consistency of the two tracks at the given time.

In more detail, if the inter-ray distance of the two 2D-to-3D map-
ping rays is larger than a predetermined threshold, this indicates that
the two tracked results are inconsistent, hence immediately prompt-
ing re-initialization. Furthermore, at each frame, the multi-pose face
detectors of Section 4.4 are also applied around the two tracking re-
sults to determine whether there indeed exists a face object in the
local regions of interest (for example, in the proposed system, this
is set to a 80x 80 pixel region when running on CHIL seminar data
collected at UKA). If faces could not be detected in the local region
for several frames (30 in our case) in any of the two camera views, a
re-initialization decision is prompted.
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Fig. 5. Brief overview of the incremental adaptive subspace update
used for 2D tracking, when including a novel observation (Alg. 1),
or excluding a distant past observation (Alg. 2) from the subspace.



4.4. Multi-Pose 2D Face Detection

Face detection is a critical component of the developed system, being
used at the initialization (Section 4.1) and drift detection stages (Sec-
tion 4.3) of the 3D head tracking sub-system, and in addition being
the required step to produce 2D face results, based on the 3D head
location estimate, as discussed in Section 3.3. Our system adopts a
multi-pose face detector approach, with classifiers trained using the
FloatBoost technique [38], an AdaBoost variant [33].

4.4.1. AdaBoost and FloatBoost Learning

AdaBoost provides a simple yet effective approach for stagewise
learning of a nonlinear classification function [61]. While a good
classifier is difficult to obtain at once, AdaBoost learns a sequence of
more easily attainable “weak” classifiers, whose performances may
be poor, but better than random guessing. It then boosts (combines)
them into a “strong” classifier of higher accuracy.

Viola and Jones [33] successfully applied AdaBoost classifica-
tion to the face detection problem, following earlier work [62, 63].
There, AdaBoost is adapted to solve three issues: (i) Learning effec-
tive features from a large feature set; (ii) Constructing weak classi-
fiers, each based on one of the selected features; and (iii) Boosting
the weak classifiers into a stronger one. In the particular two-class
face detection problem, tens of thousands of simple Haar wavelet-
like features are defined, and an appropriate scheme for their selec-
tion is designed. The process is carried out sequentially, at each
step m selecting a weak classifier f,,(h), simply designed based
on its corresponding feature, over the pool of available features. The
weak classifier is added into a linear combination of the already cho-
sen weak classifiers in previous steps, resulting to a stronger one,
Fr(h). The selection of f,(h) is based on minimizing the classi-
fication error of F,(h) on an appropriately weighted epoch of the
training data. The scheme therefore represents a greedy sequential
forward search procedure.

An alternative training algorithm, applied to the face detec-
tion problem, appears in [38]. This employs the sequential float-
ing search method [64] that allows feature deletion and controlled
backtracking during the strong classifier learning process. In partic-
ular, a “conditional exclusion” step is added to AdaBoost training.
In it, each of the weak classifiers fr(h), 0 < k < m, that con-
stitute elements of F, (h) is examined to check whether removing
it may actually reduce classification error of the remaining linear
combination. If such situation occurs, and assuming that weak clas-
sifier fy, (h) is the one that reduces the error the most when removed,
fn(h) will be deleted, and all classifiers fr(h), n < k < m, will be
re-learned. The process results in more expensive training compared
to the traditional AdaBoost scheme, but yields more compact sets of
weak classifiers for testing.

Both AdaBoost and FloatBoost learning approaches discussed
can be used to combine the successively stronger classifiers into a
cascade structure [33,38]. The goal is for the resulting classification
structure to quickly reject uninteresting non-face candidates h, while
focusing more attention to candidates that appear to be face-like (or
confused as such). A simple framework is proposed for this purpose
in [33].

4.4.2. Implementation Details

In our implementation, we use the FloatBoost approach [38] to train
cascaded (layered) face classifiers using Haar wavelet features [33].
In particular, since faces may be visible in the available camera views

with different head poses, we train two detectors, based on cluster-
ing visible faces into two groups: Frontal ones that also contain near-
frontal faces, and left-side profile ones pooled together with mirrored
right-side profile faces. The two face detectors are trained on devel-
opment set data, on images cropped based on the available CHIL
corpus annotations (see also Section 6.1). For negative examples
(non-faces), training samples are cropped from an image database
that does not include faces, as well as non-face regions of CHIL cor-
pus frames. Separate face detectors have been trained for each of the
three parts of the CHIL database, discussed in Section 6.1. For ex-
ample, for the “CHIL04” set, 1606 frontal and 1542 profile images
have been used. Following FloatBoost training, the resulting frontal
face detector consists of 15 layers and 576 Haar wavelet features,
whereas the profile view one consists of 30 layers and 4330 features.
Notice that during the testing phase, an additional detector of right-
side profile view faces is used. This is readily obtaining by mirroring
the left-side profile view face detector [38]. An example of detected
faces on CHIL data is depicted in the upper rows of Fig. 4.

5. ALTERNATIVE 3D TRACKING SYSTEMS

In order to evaluate the performance of the proposed system, we
compare it with a number of alternative 3D tracking approaches in
experiments reported in Section 6. Two of the systems are only slight
variations of the proposed theme; therefore, they are briefly de-
scribed together with our experiments (see Section 6.3). The remain-
ing two however depart significantly from it. The first, somewhat
less so, since it is also face detection based, retaining the same multi-
pose FloatBoost detectors and employing an identical drift detection
mechanism [23]. However, in contrast to the proposed approach, it
relies on detecting lecturer motion in its initialization phase and em-
ploys 2D mean shift tracking [40]. The second system considered
is based on background subtraction for tracking and constitutes an
adaptation of the IBM “Smart Surveillance Engine” [25, 65] to the
CHIL tracking task. The two systems are described next.

5.1. Motion and Mean-Shift Tracking Based System

Similarly to the proposed system, this alternative approach consists
of three components, namely 3D initialization, 2D tracking, and drift
detection. The latter, as well as the face detection part of the ini-
tialization component are identical to the proposed system, as de-
scribed in Sections 4.3 and 4.4, respectively. However, the system
lacks the more sophisticated spatio-temporal dynamic programming
framework for initialization, using instead a motion detection based
approach to identify candidate regions for initialization. In addition,
it replaces adaptive subspace tracking with the mean-shift tracking
algorithm. The two components that differ from the proposed system
are briefly discussed below. More information can be found in [23].
Notice that as with the approach in Section 3.3, this system can be
used for tracking “visible” faces.

5.1.1. Initialization

At the initialization stage, three primary modules are employed: Mo-
tion analysis, face detection, and triangulation (based on camera cal-
ibration information).

First, independently for each camera view, motion history is es-
timated to rapidly determine where movement has occurred. The
algorithm used is based on work by Davis and Bobick [66]. Obtain-
ing a foreground silhouette is achieved through subtraction between
two consecutive frames instead of background subtraction. As the
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Fig. 6. Examples of processing steps in an alternative 3D head
tracking system, based on face detection, motion estimation, and
mean shift tracking [23]. (a) Motion history image for two camera
views; motion objects are segmented as foreground (white pixels).
(b) Multi-pose face detection result, after FloatBoost face detectors
are applied locally around the resulting foreground region. (c¢) Local
face detection applied within windows around the mean shift based
tracking results in the two camera views.

person moves, the most recent foreground silhouette is copied as the
highest value in the so-called “motion history image” (MHI). MHI
pixel values that fall below a threshold are set to zero. An example
of the algorithm applied to two camera views is depicted in Fig. 6(a).

Subsequently, a multi-pose face detector, identical to the one of
the proposed system (Section 4.4), is applied to the foreground re-
gion only (where motion occurred), instead of the whole frame. The
detection results for each camera view can then be used to verify
whether the detected faces belong to the same person, based on cal-
ibration information [46], thus providing the 3D head position. The
highest lying 3D position within the general seminar presenter area
(see also Fig. 1) is returned as the initialization estimate for subse-
quent tracking.

The above algorithm could in principle be applied to all four
camera views. However, in order to reduce the pool of 3D initializa-
tion candidates, two only camera views are being used in the imple-
mentation of [23], as many more candidates would have arisen from
four versus two views. These cameras have been selected based on
development data from each lecture as the cameras with the highest
percentage of (near-)frontal faces. This is possible for “CHIL03” and
“CHILO04” data, where development and evaluation sets are available
for each of the lectures in the corpus (see Section 6.1), and assumes
that the lecturer’s general location behavior would not change over
the duration of the seminar. Alternative camera selection schemes
can however be easily devised.

5.1.2. Mean Shift Tracking

Following the initialization component and the successful location of
the presenter’s face, the algorithm switches into its tracking mode.
A color-based face model of the detected face region is first created
for tracking in each of the two camera views. In particular, the one-
dimensional histogram of the H component in the HSV color space
is used for this purpose. The mean shift iteration algorithm is then
employed for tracking [40], based on the Bhattacharyya coefficient,
around a target position predicted by means of Kalman filtering [67].
The algorithm is applied separately in the two camera view images to
find the best target candidate. Subsequently, triangulation provides
the 3D position estimate, with drift detection, as in Section 4.3, flag-
ging possible inconsistencies that trigger re-initialization.

5.2. Background Subtraction Based System

This system constitutes a 3D tracker, developed on top of the IBM
“Smart Surveillance Engine” (SSE) 2D (image plane) tracker [68].
The system applies the 2D tracker independently to each of the
four available camera views, and then integrates the information in
3D [69].

The 2D component is based around a background-subtraction
object detection system [25, 65], which uses a multiple Gaussian
color model at each pixel. Objects are tracked in the image plane
from frame to frame using the “ColourField” tracking method de-
scribed in [68]. A preliminary extension of this system to 3D track-
ing, called the “Face Cataloger” appears in [9]. There, the 2D tracker
was applied independently in two, nearly orthogonal, views, and
used a head detection algorithm to locate the head center, regardless
of pose. The estimated head points from pairs of tracks in the 2D
views were then triangulated to determine correspondence and esti-
mate 3D head centroid positions. Subsequently, this information was
used to steer a calibrated pan-tilt-zoom camera to the head position
to allow head close-ups to be captured. An additional face detection
system guided a closed-loop control system to further zoom in, if
the face was visible from the steered camera, overcoming localiza-
tion and calibration errors in the fixed cameras.

Since then, improvements in the underlying 2D tracking algo-
rithm allowed a new 3D tracking algorithm to be developed for the
CHIL task [69]. This approach dispensed with the head detector,
which had limitations when multiple targets were being tracked, and
was found to be unnecessary in lectures, where the head is almost
always the highest point of the presenter’s body. In this version
of the tracker, the underlying improved 2D tracking algorithms of
the IBM SSE system are again employed, unmodified from their
usual outdoor surveillance configuration. The 2D tracker provides
a temporally-smoothed model of the objects observed in each view,
together with each object’s location, tracked through occlusions. The
2D track information however is not used in the 3D engine; instead,
temporal consistency is applied directly in 3D.

In more detail, at each frame, the 2D tracker is applied, and the
resulting 2D probabilistic models are used to determine the position
of the head top. This is taken to be the point whose y coordinate is
the top of the object model bounding box and whose x coordinate is
that of the centroid of the upper sixth of the model. This assumes that
people’s projections in the camera views have the head uppermost,
but are not necessarily vertical.

The resulting 2D object points are considered as hypotheses for
the top of the speaker head, and when coupled with the camera cali-
bration information, each gives a 3D ray, along which the speaker’s
head might lie. Validation for these hypotheses in other views is then
sought, by computing the shortest distance d.., -, between each pair
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Fig. 7. Detection results for the background subtraction based
tracker on four synchronous camera views. Foreground blobs are
shown in solid green. Candidate head-top points are depicted as
small orange circles. 3D head location hypotheses are shown back-
projected as larger blue circles. The current Viterbi path is depicted
as a green line.

(71, 72) of such rays from different cameras. All such pairings are
evaluated, sorted and compared to a distance threshold D set to 300
mm, with the closest match being considered first. The following
algorithm is used for this purpose:

1. Start with a pool of ray hypotheses for each camera.

2. Ifdr,r, < D, create a 3D hypothesis at the midpoint, pr; r,,
of the shortest inter-ray line.

3. Search the remaining cameras for other rays 73 that pass
this point within a distance of D, move the hypothesis to
Pri,ro,rs,..., the least squares fit for all rays, and repeat for
any remaining cameras.

4. Store the hypothesis h;(t), and remove from the pools the
rays just used in this 3D hypothesis.

5. Repeat from step 2.

These 3D hypothesis points can be associated over time and con-
catenated into 3D tracks. For this purpose, dynamic programming is
employed to find the best track hypothesis through the temporal se-
quence of 3D head-top hypotheses. The approach uses a beam search
with up to IV (typically 50) search hypotheses active, to search for
the shortest path passing through head location hypotheses. Tra-
jectory costs are given by (3), but with a few differences; namely,
CrHP|HY) = |HPY — HV| and CL(H) = 0. At
each time instant, all paths are updated, where each path can be re-
tained with no additional evidence (with a penalty), or by adding
one of the 3D location hypotheses for that instant. This produces
many search hypotheses which are sorted by cost, with only the top
N retained for the next instant. At the end, the lowest cost path is re-
tained as the “best” path through the 3D location hypotheses. Part of
this process is depicted in Fig. 7, where background subtraction re-
sults on synchronous frames are shown for all four cameras, marked
with 2D head-top candidates and the back-projected locations of a
3D hypothesis, as well as the current best track.

To allow effective background subtraction, background images
are used when testing this algorithm on the CHIL lecture corpus.

These images are derived by splicing frames from the development
set together, so as to remove the lecturer. This process is performed
automatically, based on development CHIL data, and is possible for
the “CHILO03” and “CHILO04” sets, since they contain development
and evaluation data from the same lectures (see also Section 6.1).
Furthermore, and similarly to all trackers used in this work, spatial
constraints about the lecturer’s 3D location are utilized to improve
performance (see also Fig. 1).

6. EXPERIMENTS ON THE CHIL CORPUS

We now proceed to evaluate the performance of the proposed track-
ing scheme on the CHIL lecture corpus and compare it to alternative
approaches. The emphasis in our experiments is placed on the 3D
lecturer tracking task, but we also consider the 2D face localization
task at the end of the section. Before reporting results, we briefly
describe the three parts of the CHIL corpus, its annotations, and the
adopted evaluation metrics.

6.1. The CHIL Lecture Corpus

Our experiments are conducted on the CHIL database. This consists
of three subsets, with a fourth set becoming available in late Febru-
ary 2007.

(i) CHILO3: This first dataset was collected in 2003 at the smart
room of Universitidt Karlsruhe, in Germany (UKA), and contains
seven lectures, each split into two development and two evaluation
segments of approximately five minutes duration each. It therefore
consists of 14 development and 14 evaluation segments. This set
will be referred to as the “CHILO03” dataset, and it has been used in
internal CHIL consortium evaluations during the summer of 2004.

(ii) CHILO4: The second phase of data collection took again place
at the UKA smart room in late 2004. This effort resulted in five lec-
tures, split in a similar fashion to the “CHIL03” set into ten devel-
opment and ten evaluation segments, each five minutes in duration.
This will be referred to as the “CHIL04” set and has been employed
in internal CHIL consortium evaluations in January 2005.

(iii) CHILOS: The most recent set is significantly more diverse, con-
taining 18 development and 24 evaluation segments of lectures col-
lected at two smart rooms, one located at UKA and the second at
the Istituto Trentino di Cultura (ITC), in Italy (see also Figs. 1 and
2). The development and evaluation sets correspond to disjoint lec-
tures. This set will be referred to as “CHIL05”, and it has been
used in the first international evaluation campaign on the “Classifi-
cation of Events, Activities and Relationships” (CLEAR) in March,
2006 [5]. It should also be mentioned that this collection effort in-
cludes three additional recording sites, partners of the CHIL con-
sortium, including IBM Research. These data however belong to
the so-called “interactive-seminar” (or meeting) scenario, where the
aim (in terms of tracking) is to determine the location of all meet-
ing participants, typically being less than six in total. This part has
been excluded from our experiments, since we focus on the seminar
lecturer tracking task.

All video data in the three sets have been recorded using four
synchronous corner cameras at 15 Hz. The frame resolution is
640x480 pixels for the UKA site and 800x600 pixels at ITC. In
terms of data annotations, visible face locations have been manually
labeled in all frame views for every 1.0s (second) for the “CHIL05”
data and 0.67s for the “CHIL03” and “CHIL04” sets. Furthermore,
the bounding boxes of such faces have been labeled in the “CHIL04”
and “CHILO5” sets, with additional facial feature points (nose bridge



and eyes) annotated in the latter. In all cases, the corresponding 3D
head centroid location is also given, as derived by triangulating the
face labels across camera views. Therefore, evaluation of tracking
algorithms is possible at the instants with available ground truths (at
0.67s or 1.0s intervals) using appropriate metrics, as discussed next.

6.2. Evaluation Metrics

A number of metrics are used in our experiments to benchmark per-
formance of 3D-head and 2D-face tracking algorithms. All are com-
puted by comparing algorithmic outputs (estimated 3D head centroid
locations or face bounding boxes) to their corresponding annotated
ground truths on the evaluation data sets. These metrics have evolved
over the multi-year duration of CHIL project technology evaluations,
as it is explained in more detail in the case of 3D tracking.

During the first two years of CHIL internal evaluations (datasets
“CHIL03” and “CHIL04”), the following were used to benchmark
3D tracking performance:

(1) 3D error: This corresponds to the mean Euclidean 3D distance in
millimeters (mm) between the estimated and the ground truth posi-
tion of the head centroid in 3D coordinates. An additional 3D metric
has been deemed of interest, namely the percentage of time instants,
where the 3D error is smaller than 300 mm. This is denoted by “%
3D err < 300” in Table 1.

(ii) 2D error: This is the mean Euclidean 2D distance in mm be-
tween the projection on the smart room floor of the estimated 3D
head center and that of the corresponding ground truth projection.
Furthermore, “% 2D err < 300 is the percentage of time instants,
where the 2D error is smaller than 300 mm.

The above metrics have been modified as part of the CLEAR
2006 evaluation campaign based on the “CHILO05” dataset [5], in or-
der to become harmonized with metrics used in the VACE program
research community [70]. In particular, two metrics have been iden-
tified as relevant to all tracking evaluations on CHIL data, spanning
both single- and multi-person, as well as single- and multi-modal
tracking conditions [5,71]. These are:

(1) Multiple object tracking accuracy (MOTA), measured as the per-
centage (%) of correct correspondences (mappings) of estimated and
ground truth persons over the evaluation set of time instants. Of
course, in the case of single-person tracking, as is the lecturer track-
ing task considered here, the mapping problem becomes trivial, since
there is at most one hypothesized and one reference person. In such
a case, the hypothesis is considered correct when the 2D Euclidean
distance between the estimated location and the ground truth (both
projected to the smart room floor), as compared to a threshold set to
500 mm. Notice that only 2D distance is considered, although the
proposed head tracking system provides 3D location information. It
is worth mentioning that the metric penalizes guessing (for example,
a default hypothesis). Such a strategy would in most cases result in
two errors for each default estimate: a false positive and a miss.

(i1) Multiple object tracking precision (MOTP): This is measured
in mm, and is simply the average 2D Euclidean distance computed
over the correct reference-hypothesis mappings. Its value therefore
ranges between 0 and 500 mm. Clearly, the MOTP metric becomes
identical to the average 2D error metric discussed earlier, if MOTA
reaches 100%.

Finally, for the 2D face detection task, a total of five metrics have
been identified by the CHIL consortium for use in the CLEAR 2006
evaluations [5]. Results based on the following three are reported in

Table 1. Comparison of 3D head-tracking performance of various
algorithms on the CHIL evaluation sets of 2003 and 2004. Clearly,
the proposed system (DPAS) performs best.

Data “CHIL03"

Metrics DPAS |DPAS-f| BGS | MMS |DPAS-d
3Derr (mm) || 140.0 | 2702 | 2784 | 253.9 | 1649.4
2Derr (mm) || 123.6 | 217.3 | 204.7 | 2283 | 1230.7
3Derr <300 || 92.9% | 82.5% | 81.2% | 84.6% | 13.2%
2D err < 300 || 93.3% | 84.3% | 84.1% | 85.3% | 14.6%
Data “CHIL04”
Metrics DPAS |DPAS-f| BGS | MMS |DPAS-d
3Derr (mm) || 1552 | 267.4 | 4803 | 4674 | 18524
2Derr (mm) || 141.8 | 208.9 | 4369 | 441.1 | 1635.1
3Derr <300 || 95.4% | 83.6% | 47.7% | 78.9% | 10.9%
2D err < 300 || 95.6% | 85.7% | 57.1% | 80.7% | 12.6%

Section 6.5:

(i) Percentage of correctly detected faces (“Corr”), namely the per-
centage of detected faces with hypothesis—reference face bounding-
box centroid distance more than half the size of the reference face.

(i) Percentage of wrong face detections (“Err”), accounting for false
positives (this includes detected faces with hypothesis—reference
bounding-box centroid distance larger than half the reference face
size).

(iii) Percentage of missed face detections (“Miss”).

In these metrics, the reference face size is defined as the average of
height and width of the annotated bounding box.

6.3. 3D Head Tracking Results on “CHIL03 / 04 Data

In the first set of experiments, we concentrate on the “CHIL03” and
“CHILO04” subsets of the corpus. As discussed above, these con-
tain non-overlapping development and evaluation subsets that corre-
spond to the same lectures. This fact allows the training of relatively
accurate face detectors, since they cover the same lecturer popula-
tion (akin to a “multi-subject” training/testing scenario, as opposed
to the more challenging “speaker-independent” case).
On these sets, we compare a total of five tracking algorithms:

(i) DPAS: This is the proposed face-detection based scheme that uses
dynamic programming and adaptive subspace tracking.

(ii) DPAS-f: This is a variation of the proposed scheme, where no
forgetting mechanism is introduced in the adaptive subspace tracking
stage, thus the influence of past distant observations is retained until
re-initialization is triggered.

(iii) DPAS-d: This is a trivial variation of the proposed scheme,
where no drift detection is present. The algorithm gets initialized
at the beginning of the multi-camera video sequence, and remains in
the tracking stage, with no re-initialization until the sequence ends.

(iv) MMS: This corresponds to the algorithm described in Sec-
tion 5.1. It constitutes a face-detection driven approach with motion
based foreground segmentation and mean shift tracking.

(v) BGS: This is the system presented in Section 5.2 that uses back-
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Fig. 8. Typical tracking behavior of the proposed system (DPAS:
solid line), compared with its variant (DPAS-f: dashed line) with no
forgetting mechanism, evaluated over a CHIL lecture segment.

ground subtraction and dynamic programming.

All above systems are run to always return a 3D head centroid
location. In case the algorithm fails to do so (for example, failing to
initialize, as discussed in Section 4.1), the returned location defaults
to the middle of the presenter’s area or the previous estimate in time,
if available (DPAS and MMS systems), or an interpolated location
between existing estimates immediately before and after the particu-
lar instant (BGS system). Concerning face-detection based schemes,
development set data are used to train the frontal and profile Float-
Boost based face detectors, as discussed in Section 4.4. Furthermore,
other system parameters, such as spatial constraints (all methods),
DP costs (see for example Section 4.1), inter-ray distance thresholds
(e.g., Sections 4.1 and 4.3), and tracking template sizes (Section 4.2,
among others) are empirically determined on development data.

Results based on the 3D/2D error metrics discussed in Sec-
tion 6.2 are depicted in Table 1. It is clear that the proposed system
(DPAS) significantly outperforms all others. Interstingly, both sys-
tems described in Section 5 (MMS and BGS) achieve similar per-
formance, but exhibit approximately twice (for the “CHIL03” set)
or three times (for “CHIL04”) the error of the proposed scheme. As
expected, the variant of the proposed system, where no drift detec-
tion is present (DPAS-d), fails miserably. Finally, it is important to
note that the introduction of the forgetting mechanism in adaptive
subspace tracking plays a significant role in improving performance.
This becomes clear from Table 1, since removing this component
(DPAS-f system) almost doubles the tracking error (over DPAS).
This is also illustrated in Fig. 8, where the evolution of 3D track-
ing error over time (quad-frame number) is depicted for one lecture
segment.

6.4. 3D Head Tracking Results on “CHIL05” Data

We next present the performance of the proposed system (DPAS) on
the “CHILO05” set. Given its overwhelmingly better results over the
alternative tracking schemes, as demonstrated in Section 6.3, no ad-
ditional comparisons are reported, with the exception of the DPAS-f
variant.

Table 2 presents the summary of the developed 3D head track-

Table 2. Performance of the proposed algorithm (DPAS) for 3D
head tracking on the “CHIL0S5” development (DEV) and evaluation
(EVA) sets, depicted per collection site and cumulatively. Number of
seminar segments are also listed.

“CHILO05” Data Metrics
Set | Site | #Sem | MOTA (%) | MOTP (mm)
D ITC 1 21.78 148
E | UKA 18 79.47 93
v all 19 7111 99
E ITC 2 98.33 92
V | UKA | 24 84.94 88
A all 26 85.96 88

ing system performance on the “CHIL05” corpus. Results are re-
ported on both development and evaluation sets, listed per collection
site, and cumulatively. As depicted in Table 2, the developed system
achieves a tracking accuracy of 85.96% on the CLEAR’06 evalua-
tion set, with a tracking precision of 88 mm. Notice that the perfor-
mance on the development set was significantly worse, at 71.11%
MOTA and 99 mm MOTP, due to poor tracking on three develop-
ment segments. When excluding them, performance on the devel-
opment set becomes 94.44% MOTA and 90 mm MOTP. Similarly,
performance on the evaluation set is unsatisfactory in two segments.
Excluding them boosts evaluation set MOTA to 93.00% and MOTP
to 86 mm. Notice, that if we were to use the metrics of Section 6.3,
the resulting performance would have been an average 2D (3D) error
of 139.1 (145.5) mm on the “CHILO05” evaluation sets, which is com-
parable to the DPAS tracking system performance on the “CHIL03”
and “CHIL04” evaluation sets (see Table 1).

Two additional results are worth mentioning: As already dis-
cussed, the MOTA metric penalizes guessing. This fact has been
taken into consideration in the DPAS system: For its evaluation on
“CHILO0S5” data, it returns no 3D hypothesis when initialization fails
(see Section 4.1). The exact approach was fine-tuned on the devel-
opment set, where it boosted the MOTA metric significantly on the
18 UKA segments from an original 69.27% (when always providing
a hypothesis) to 79.47%, as reported in Table 2. The second result
is a performance comparison between the proposed scheme (DPAS)
and its DPAS-f variant, where no forgetting mechanism is present.
The latter degrades MOTA to 81.2%; furthermore, it exhibits signif-
icantly more tracking drifts, on the average every 193.9 quad-frames
(instants), compared to 241.6 of the proposed DPAS tracker.

Additional comparisons of the proposed DPAS scheme with six
alternative systems [16—18,20-22] can be found in [5, pp. 29], as
part of the CLEAR 2006 official evaluation. These systems have
been briefly overviewed in Section 2.

6.5. 2D Face Localization Results on “CHIL05” Data

In the final set of experiments, we report the performance of the
proposed 2D face localization subsystem, based on the DPAS head
tracking system, as discussed in Section 3.3. The results are reported
on the “CHILO05” set, used in the CLEAR evaluation campaign (see
also [5, pp. 34]).

A summary of system performance based on the metrics of Sec-
tion 6.2 is given in Table 3. The system achieved 54.5% correct de-
tections, with 37.2% erroneous detections and 18.9% misses. This



Table 3. Performance of 2D face tracking on the “CHIL0O5” de-
velopment (DEV) and evaluation (EVA) sets, depicted per collection
site and cumulatively. Number of seminar segments are also listed.
All metrics are expressed in %.

“CHILO05” Data Metrics (%)

Set Site #Sem Corr \ Err \ Miss
D ITC 1 — — —
E UKA 18 74.17 21.04 15.18
v all 19 — — —
E ITC 2 84.75 28.70 3.14
\" UKA 24 52.64 37.68 19.89
A all 26 54.44 37.18 18.95

performance can be considered relatively good, if one takes into ac-
count the extremely challenging nature of the task and the rather
strict evaluation metrics. In particular, by comparing the UKA de-
velopment and evaluation set performance in Table 3, one can notice
that the performance drops significantly, due to the different lecturer
population sets (a purely “speaker independent” evaluation frame-
work is considered). Furthermore, errors and misses are relatively
balanced on the development set, but not so on the evaluation data.

A final remark concerns the adopted strategy described in Sec-
tion 3.3 for face detection. A number of approaches have been con-
sidered for producing 2D face results from the 3D head location es-
timate in an effort to reduce and balance the false positive (“Err”)
and negative (“Miss”) error rates. Among them, an interesting mod-
ification of the proposed method is to always return the 2D tracking
result on the two selected camera views where the subspace track-
ing takes place (Section 4.2), and only apply multi-pose face detec-
tion to the two non-tracked camera views around a region of interest
based on the 3D head estimate. This is in contrast to first applying
the multi-pose face detector on all four views, and only resorting to
the tracking result of the selected camera views when the detector
fails to return a face. The performance of the former approach was
measured on seven UKA development set seminars at 77.26% Corr,
18.67% Err, and 9.37% Miss, compared to the superior 85.92% Corr,
9.95% Err, and 9.43% Miss of the adopted approach.

6.6. System Run-Time Performance

There has been no particular effort to optimize the proposed sys-
tem implementation. To reduce face detection overhead and allow
speedier development, the whole system has been implemented in a
cascade, where face detection is first applied at all instants and all
camera views (as in Section 4.4), before feeding its output to the
remaining system modules (described in Sections 4.1-4.3). In prac-
tice, this is of course suboptimal, as the two 2D tracking processes
(Section 4.2) can perform most of the required work in real time —
20 f/s (frames per second) on a P4 2.8 GHz, 512 MByte desktop. In
contrast, face detection over the entire frame in four camera views is
significantly slower and runs only at about 2 f/s.

7. SUMMARY AND DISCUSSION

In this paper, we have presented a vision system for joint 3D
head and 2D face tracking for multi-camera smart room settings,
where calibrated cameras with wide, overlapping fields of view syn-

chronously record human interaction. In particular, the system has
been developed for single-person tracking of the presenter in the
CHIL lecture scenario. We described details of the system com-
ponents, with important highlights being the use of AdaBoost-like
multi-pose face detectors, employment of a spatio-temporal dynamic
programming algorithm to initialize 3D location hypotheses, and the
use of an adaptive subspace learning based 2D tracking scheme with
a forgetting mechanism, as a means to reduce tracking drift and in-
crease robustness. The proposed system deviates significantly from
other literature work, by not relying on motion estimation, back-
ground subtraction, or human body appearance modeling.

We have extensively tested the system on three releases of the
CHIL lecture corpus. The proposed system exhibited excellent re-
sults with 3D average tracking errors of 140, 155, and 146 mm on
three test sets, and outperformed a number of competitive techniques
considered in this paper, ranging from simple system variants to en-
tirely different approaches. These experiments, as well as results
of the CLEAR 2006 evaluation campaign, demonstrate that the pro-
posed approach is well suited to the problem.

Nevertheless, the system has potential limitations: For exam-
ple, it is clearly inappropriate for room/camera configurations that
consistently result in capturing faces in a resolution too small to al-
low their detection. A second issue concerns extending the frame-
work to multi-person tracking. Clearly, its 2D tracking and 3D drift
detection modules are readily applicable to the multi-person task.
However, robust redesign of the initialization module is more chal-
lenging. For this purpose, a dynamic programming framework that
produces multiple tracks is envisaged, with the number of retained
tracks optimized by ad-hoc or information-theoretic approaches.

In future work, we plan to continue research on the topic
by working on the multi-person tracking problem. An additional
area of interest concerns exploring appropriate multi-camera fusion
schemes to allow the system tracking component to directly operate
in the 3D space. A more efficient implementation in order to achieve
faster run-time performance is also among our goals.
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