Skip to main content

Advertisement

Log in

A fuzzy logic approach to detect hotspots with NOAA/AVHRR image using multi-channel information fusion technique

  • Original paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel approach to detect hotspots using NOAA advanced very high resolution radiometer (AVHRR) for the Jharia, Jharkhand (India) region. Jharia coalfield in Jharkhand is the richest coal bearing area in India that contains a large number of mine fires which have been burning for several decades. In this paper, a fuzzy based methodology has been applied for the determination of hotspots to Jharia AVHRR images based on a theoretical model that establishes relationship among AVHRR channel 4, channel 5 and different vegetation indices. The algorithm consists of four stages: data preprocessing, multi-channel information fusion, hotspot detection using fuzzy logic approach and validation of result. The most commonly used existing algorithms like contextual algorithms, multi-thresholding, entropy based thresholding, and genetic algorithms have limitation that they need some mathematical model for training in order to get the required result. The employed fuzzy logic approach overcomes this requirement and in addition, it is flexible, tolerant of imprecise data and is based on natural language. The results were compared with the results obtained by ground survey and a good agreement has been obtained between observed and predicted hotspots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stracher, G.B., Taylor, T.P., Prakash, A.: Coal fires: a synopsis of their origin, remote sensing detection, and thermodynamics of sublimation. In: Shannon S. (ed.), Case Histories of Mine Reclamation and Regulation, Environmental Technology for Mining: Robertson GeoConsultants Inc., Reno, NV; Vancouver, B.C., 2002, pp. 1–8

  2. Prakash A., Gupta R.P. and Saraf A.K. (1997). A Landsat TM based comparative study of surface and subsurface fires in the Jharia coalfield, India. Int. J. Remote Sens. 18(11): 2463–2469

    Article  Google Scholar 

  3. Gupta R.P. and Prakash A. (1998). Reflectance aureoles associated with thermal anomalies die to subsurface mine fires in the Jharia coalfield, India. Int. J. Remote Sens. 19(14): 2619–2622

    Article  Google Scholar 

  4. Prakash A. and Gupta R.P. (1999). Surface fires in Jharia coalfield, India – their distribution and estimation of area and temperature from TM data. Int. J. Remote Sens. 20(10): 1935–1946

    Article  Google Scholar 

  5. Kaufman Y.J., Tucker C.J. and Fung I. (1990). Remote sensing of biomass burning in the tropics. J. Geophys. Res. 95: 9927–9939

    Article  Google Scholar 

  6. Giglio L., Kendall J.D. and Justice C.O. (1999). Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int. J. Remote Sens. 20(10): 1947–1985

    Article  Google Scholar 

  7. Cuomo V., Lasaponara R. and Tramutoli V. (2001). Evaluation of a new satellite based method for forest fire detection. Int. J. Remote Sens. 22: 1799–1826

    Article  Google Scholar 

  8. Pu R., Gong P., Li Z. and Scarborough J. (2004). A dynamic algorithm for wildfire mapping with NOAA/AVHRR data. Int. J. Wildland Fire 13: 275–285

    Article  Google Scholar 

  9. Lasaponara R. (2005). Inter-comparison of AVHRR-based fire susceptibility indicators for the Mediterranean ecosystems of southern Italy. Int. J. Remote Sens. 26(5): 853–870

    Article  Google Scholar 

  10. Kucera J., Yasuoka Y. and Dye D.G. (2005). Creating a forest fire database for the far East of Asia using NOAA/AVHRR observation. Int. J. Remote Sens. 26(11): 2423–2439

    Article  Google Scholar 

  11. Aguado I., Chuvieco E., Martin P. and Salas J. (2005). Assessment of forest fire danger conditions in southern Spain from NOAA images and meteorological indices. Int. J. Remote Sens. 24(8): 1653–1668

    Google Scholar 

  12. Galindo I., Lopez-Perez P. and Evangelista-Salazar M. (2003). Real-time AVHRR forest fire detection in Mexico (1998–2000). Int. J. Remote Sens. 24(1): 9–22

    Article  Google Scholar 

  13. Ichoku C., Kaufman Y.J., Giglio L., Li Z., Fraser R.H., Jin J.Z. and Park W.M. (2003). Comparative an2alysis of fire detection algorithms using AVHRR data for the 1995 fire season in Canada: perspective for MODIS. Int. J. Remote Sens. 24(8): 1669–1690

    Article  Google Scholar 

  14. Li, Z., Kaufman, Y.J., Ichoku, C., Fraser, R., Trishchenko, A., Giglio, L., Jin, L., Yu, X.: A review of AVHRR-based active fire detection algorithms: principles, limitations, and recommendations. Global and Regional Vegetation Fire Monitoring from Space: Planning and Coordinated Effort, edited by Ahern F., Goldammer J.G., Justice C. 199–225 (2001)

  15. Justice, C.O., Malingreau, J.-P., Setzer, A.W.: Satellite remote sensing of fires: potential and limitations. Fire in the Environment. In: Crutzen, P.J., Goldammer, J.G. (eds) 77–88 (1993)

  16. Justice, C.O., Kendall, J.D., Dowty, P.R., Scholes, R.J.: Satellite remote sensing of fires during the SAFARI campaign using NOAA-AVHRR data. J. Geophys. Res. 101, 23,851–23, 863 (1996)

    Google Scholar 

  17. Kennedy P.J., Belward A.S. and Gregoire J.-M. (1994). An improved approach to fire monitoring in West Africa using AVHRR data. Int. J. Remote Sens. 15(11): 2235–2255

    Article  Google Scholar 

  18. Franca J.R.A., Brustet J.M. and Fontan J. (1995). Multispectral remote sensing of biomass burning in west Africa. J. Atmos. Chem. 22: 81–110

    Article  Google Scholar 

  19. Flasse S.P. and Ceccato P. (1996). A contextual algorithm for AVHRR fire detection. Int. J. Remote Sens. 17: 419–424

    Article  Google Scholar 

  20. Pozo D., Olmo F.J. and Alados-Arboledas L. (1997). Fire detection and growth monitoring using a multitemporal technique on AVHRR mid-infrared and thermal channels. Remote Sens. Environ. 60: 111–120

    Article  Google Scholar 

  21. Rauste Y., Herland E., Frelander H., Soini K., Kuoremaki T. and Ruokari A. (1997). Satellite-based forest fire detection for fire control in boreal forests. Int. J. Remote Sens. 18: 2641–2656

    Article  Google Scholar 

  22. Nakayama M., Maki M., Elvidge C.D. and Liew S.C. (1999). Contextual algorithm adapted for NOAA-AVHRR fire detection in Indonesia. Int. J. Remote Sens. 20: 3415–3421

    Article  Google Scholar 

  23. Li Z., Khananian A., Fraser R.H. and Cihlar J. (2001). Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery. IEEE Trans. Geosci. Remote Sens. 39(9): 1859–1870

    Article  Google Scholar 

  24. Melgani F., Al Hashemy B.A.R. and Taha S.M.R. (2000). An explicit fuzzy supervised classification method for multispectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 38(1): 287–295

    Article  Google Scholar 

  25. Moore T.S., Campbell J.W. and Feng H. (2001). A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms. IEEE Trans. Geosci. Remote Sens. 39(8): 1764–1776

    Article  Google Scholar 

  26. Zadeh L.A. (1984). Making computers think like people. IEEE Spectr. 8: 26–32

    Google Scholar 

  27. Pereira J.M.C. (1999). A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans. Geosci. Remote Sens. 37(1): 217–226

    Article  Google Scholar 

  28. Costa, G.A., Meirelles, M.S., Singh, D., Herlin, I., Berroir, J.P., Silva, E.F.: A methodology to support environmental degradation monitoring and analysis using AVHRR data. Anais XII Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, Brasil, INPE, 16–21 abril (2005) pp. 2941–2948

  29. Zadeh L.A. (1965). Fuzzy Sets. Inform. Control 8: 338–353

    Article  MATH  MathSciNet  Google Scholar 

  30. Bardossy A. and Samaniego L. (2002). Fuzzy rule-based classification of remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 40(2): 362–374

    Article  Google Scholar 

  31. Lopez S., Gonzalez F., Llop R. and Cuevas J.M. (1991). An evaluation of the utility of NOAA AVHRR images for monitoring forest fire risk in Spain. Int. J. Remote Sens. 12: 1841–1851

    Article  Google Scholar 

  32. Wong A.K.C. and Sahoo P.K. (1989). A gray-level threshold selection method based on maximum entropy principle. IEEE Trans. Syst. Man Cybernet. 19: 866–871

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Gautam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautam, R.S., Singh, D. & Mittal, A. A fuzzy logic approach to detect hotspots with NOAA/AVHRR image using multi-channel information fusion technique. SIViP 1, 347–357 (2007). https://doi.org/10.1007/s11760-007-0028-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-007-0028-1

Keywords

Navigation