Skip to main content
Log in

Dynamically restricted codebook-based vector quantisation scheme for mesh geometry compression

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The transmission and storage of large amounts of vertex geometry data are required for rendering geometrically detailed 3D models. To alleviate bandwidth requirements, vector quantisation (VQ) is an effective lossy vertex data compression technique for triangular meshes. This paper presents a novel vertex encoding algorithm using the dynamically restricted codebook-based vector quantisation (DRCVQ). In DRCVQ, a parameter is used to control the encoding quality to get the desired compression rate in a range with only one codebook, instead of using different levels of codebooks to get different compression rate. During the encoding process, the indexes of the preceding encoded residual vectors which have high correlation with the current input vector are prestored in a FIFO so that both the codevector searching range and bit rate are averagely reduced. The proposed scheme also incorporates a very effective Laplacian smooth operator. Simulation results show that for various size of mesh models, DRCVQ can reduce PSNR degradation of about 2.5–6 dB at 10 bits per vertex comparative to the conventional vertex encoding method with stationary codebooks and, DRCVQ with arithmetic coding of codevector indexes and Laplacian smoothener can outperform the state-of-art Wavemesh for non-smooth meshes while performing slightly worse for smooth meshes. In addition, we use MPS as codevector search acceleration scheme so that the compression scheme is real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rossignac, J.: Edgebreaker: connectivity compression for triangle meshes. IEEE Trans. Visual. Comput. Graph. 5(1), 47–61 (1999)

    Article  Google Scholar 

  2. King, D., Rossignac, J.: Guaranteed 3.67  V bit encoding of planar triangle graphs. In: 11th Canadian Conference on Computational Geometry, pp. 146–149 (1999)

  3. Gumhold, S.: New bounds on the encoding of planar triangulations. Technical Report WSI-2000-1, University of Tubingen (2000)

  4. Cohen-Or, D., Levin, D., Remez, O.: Progressive compression of arbitrary triangular meshes. In: Proc. IEEE Visualization ’99, pp. 67–72 (1999)

  5. Szymczak, A., King, D., Rossignac, J.: An edgebreaker-based efficient compression scheme for regular meshes. Comput. Geom. 20(1–2), 53–68 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Isenburg, M., Snoeyink, J.: Spirale reversi: reverse decoding of the edgebreaker encoding. In: Proceedings of 12th Canadian Conference on Computational Geometry, pp. 247–256 (2000)

  7. Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface 98 Conference Proceedings, pp. 26–34 (1998)

  8. Bajaj, C., Pascucci, V., Zhuang, G.: Single-resolution compression of arbitrary triangular meshes with properties. In: Proc. Data Compression Conf. (DCC’99), pp. 247–256 (1999)

  9. Gumhold, S., Straßer, W.: Real time compression of triangle mesh connectivity. In: Proc. ACM SIGGRAPH’98, pp. 133–140 (1998)

  10. Isenburg, M., Snoeyink, J.: Mesh collapse compression. In: Proceedings of SIBGRAPI’99, Campinas, pp. 27–28 (1999)

  11. Cohen, R., Cohen-Or, D., Ironi, T.: Multi-way geometry encoding. Technical report (2002)

  12. Evans, F., Skiena, S., Varshney, A.: Optimizing triangle strips for fast rendering. In: Proc. IEEE Visualization’96, pp. 319–326 (1996)

  13. Hoppe, H.: Optimization of mesh locality for transparent vertex caching. In: Proc. ACM SIGGRAPH’99, pp. 269–276 (1999)

  14. Deering, M.F.: Geometry compression. In: Proc. ACM SIGGRAPH’95, pp. 13–20 (1995)

  15. Chow, M.M.: Optimized geometry compression for real-time rendering. In: Proc. IEEE Visualization’97, pp. 346–354 (1997)

  16. Gray, R.M.: Vector quantization. IEEE ASSP MAGAZINE (1984)

  17. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer, Norwell (1992)

    MATH  Google Scholar 

  18. Sun Microsystems: The Java3D API Specification. http://java.sun.com/products/java-media/3D/index.html (1999)

  19. Taubin, G., Rossignac, J.: Geometric compression through topological surgery. ACM Trans. Graph. 17(2), 84–115 (1998)

    Article  Google Scholar 

  20. Taubin, G., Horn, W., Rossignac, J., Lazarus, F.: Geometry coding and VRML. In: Proc. IEEE 86(6), 1228–1243 (1998)

    Article  Google Scholar 

  21. Lee, E., Ko, H.: Vertex data compression for triangular meshes. In: Proceedings of Pacific Graphics, pp. 225–234 (2000)

  22. Chou, P.H., Meng, T.H.: Vertex data compression through vector quantization. IEEE Trans. Visual. Comput. Graph. 8(4), 373–382 (2002)

    Article  Google Scholar 

  23. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: ACM SIGGRAPH Conference Proceedings, pp. 279–286 (2000)

  24. Karni, Z., Gotsman, C.: 3D mesh compression using fixed spectral bases. In: Proceedings of Graphics Interface, Ottawa, pp. 1–8 (2001)

  25. Sorkine, O., Cohen-Or, D., Toldeo, S.: High-pass quantization for mesh encoding. In: Proceedings of Eurographics Symposium on Geometry Processing (2003)

  26. Khodakovsky, A., Schroder, P., Sweldens, W.: Progressive geometry compression. In: Proc. SIGGRAPH’00, pp. 271–278 (2000)

  27. Gandoin, P.M., Devillers, O.: Progressive lossless compression of arbitrary simplicial complexes. ACM Trans. Graph. 21(3), 372–379 (2002)

    Article  Google Scholar 

  28. Valette, S., Prost, R.: Wavelet-based progressive compression scheme for triangle meshes: wavemesh. IEEE Trans. Visual. Comput. Graph. 10(2), 123–129 (2004)

    Article  Google Scholar 

  29. Isenburg, M., Alliez, P.: Compressing polygon mesh geometry with parallelogram prediction. In: IEEE Visualization Conference Proceedings, pp. 141–146 (2002)

  30. Isenburg, M.: Compressing polygon mesh connectivity with degree duality prediction. In: Graphics Interface Conference Proc., pp. 161–170 (2002)

  31. Khodakovsky, A., Alliez, P., Desbrun, M., Schroder, P.: Near- optimal connectivity encoding of 2-manifold polygon meshes. Graphical Models, special issue (2002)

  32. Bajaj, C.L., Pascucci, V., Zhuang, G.: Single resolution compression of arbitrary triangular meshes with properties. Comput. Geom. Theor. Appl. 14, 167–186 (1999)

    MATH  MathSciNet  Google Scholar 

  33. Kronrod, B., Gotsman, C.: Optimized compression of triangle mesh geometry using prediction trees. In: Proceedings of 1st International Symposium on 3D Data Processing, Visualization and Transmission, pp. 602–608 (2002)

  34. Ahn, J.-H., Kim, C.-S., Ho, Y.-S.: Predictive compression of geometry, color and normal data of 3-D mesh models. IEEE Trans. Circuits Systems Video Technol 16(2), 291–299 (2006)

    Article  Google Scholar 

  35. Feng, Y.S., Nasrabadi, N.M.: Dynamic address-vector quantisation of RGB colour images. Commun. Speech Vis. 129(4), 225–231 (1991)

    Article  Google Scholar 

  36. Feng, Y.S., Nasrabadi, N.M.: Dynamic address-vector quantization algorithm based on inter-block and inter-color correlation for color image coding. Proc.—ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. 3, 1755–1758 (1989)

    Google Scholar 

  37. Zhu, C., Po, L.M.: Minimax partial distortion competitive learning for optimal codebook design. IEEE Trans. Image Process. 7(10), 1400–1409 (1998)

    Article  Google Scholar 

  38. Princeton University. 3D model search engine. http://shape.cs.princeton.edu

  39. Ra, S.W., Kim, J.K.: Fast mean-distance-ordered partial codebook search algorithm for image vector quantization. IEEE. Trans. Circuits Systems-II. 40(9), 576–579 (1993)

    Article  Google Scholar 

  40. Bei, C.D., Gray, R.M.: An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Trans. Commun. COMM-33, 1132–1133 (1985)

    Article  Google Scholar 

  41. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: Measuring error between surfaces using the Hausdorff distance. Proc. IEEE Int. Conf. Multimedia Expo 2002 (ICME) I, 705–708 (2002)

    Article  Google Scholar 

  42. Alliez, P., Desbrun, M.: Valence-driven connectivity encoding for 3D meshes. Comput. Graph. Forum. 20(3), 480–489 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe-Ming Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, ZM., Li, Z. Dynamically restricted codebook-based vector quantisation scheme for mesh geometry compression. SIViP 2, 251–260 (2008). https://doi.org/10.1007/s11760-008-0053-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-008-0053-8

Keywords

Navigation