Skip to main content
Log in

Direction-finding of coherent signals based on cylindrical vector-hydrophones array

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a new “particle-velocity-field and spatial smoothing” (PVFSS) algorithm is proposed for direction-finding of coherent signals, using the cylindrical vector-hydrophones array in the underwater acoustic medium. In contrast to the customary “spatial smoothing” technique, it provides a smaller reduction in the overall array’s spatial aperture. While in contrast to the “particle-velocity-field smoothing” technique, it may increase the number of decorrelate-able coherent signals. Moreover, an ESPRIT-based, closed-form direction-finding algorithm is proposed and a method of removing cyclic ambiguity is provided. Finally, the theoretical performance of the proposed algorithm is analyzed. Simulation results are shown to verify the efficacy of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shan T.-J., Wax M., Kailath T.: On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust. Speech Signal Process. 33(8), 809–811 (1985)

    Google Scholar 

  2. Pillai S.U., Kwon B.H.: Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 37(1), 8–15 (1989)

    Article  MATH  Google Scholar 

  3. Wang H., Ray Liu K.J.: 2-D spatial smoothing for multipath coherent signal separation. IEEE Trans. Aerosp. Electron. Syst. 34(2), 391–405 (1998)

    Article  Google Scholar 

  4. Choi Y.-H.: On conditions for the rank restoration in forward/backward spatial smoothing. IEEE Trans. Signal Process. 50(11), 2900–2901 (2002)

    Article  Google Scholar 

  5. Rahamim D., Tabrikian J., Shavit R.: Source localization using vector sensor array in a multipath environment. IEEE Trans. Signal Process. 52(11), 3096–3103 (2004)

    Article  Google Scholar 

  6. Tao J.W., Chang W.X., Cui W.: Vector field smoothing for DOA estimation of coherent underwater acoustic signals in presence of a reflecting boundary. IEEE Sens. J. 7(8), 1152–1158 (2007)

    Article  Google Scholar 

  7. Berliner M.J., Lindberg J.F.: Acoustic Particle Velocity Sensors: Design, Performance and Applications. AIP, Woodbury (1996)

    Google Scholar 

  8. Nickles, J.C., Edmonds, G., Harriss, R., Fisher, F., Hodgkiss, W.S., Giles, J., D’Spain, G.: A vertical array of directional acoustic sensors. In: Proceedings of the IEEE Oceanic 92 Conference, pp. 340–345 (1992)

  9. Wong K.T., Zoltowski M.D.: Closed-form underwater acoustic direction-finding with arbitrarily spaced vector-hydrophones at unknown locations. IEEE J. Ocean. Eng. 22(3), 566–575 (1997)

    Article  Google Scholar 

  10. Wong K.T., Zoltowski M.D.: Root-MUSIC-based azimuth- elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEE Trans. Signal Process. 47(12), 3250–3260 (1999)

    Article  Google Scholar 

  11. Wong K.T., Zoltowski M.D.: Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace. IEEE J. Ocean. Eng. 25(2), 262–273 (2000)

    Article  Google Scholar 

  12. Van Trees H.L.: Optimum Array Processing, ch. 4, pp. 316–320. Wiley, New York (2002)

    Book  Google Scholar 

  13. Fuchs J.J.: On the application of the global matched filter to DOA estimation with uniform circular arrays. IEEE Trans. Signal Process. 49(4), 702–709 (2001)

    Article  Google Scholar 

  14. Griffiths, H.D., Griffiths, J.W.R., Cowan, C.F.N., et al.: Processing techniques for circular sonar arrays. In: Proceedings of the Sixth International Conference on Electronic Engineering in Oceanography, pp. 67–71 (1994)

  15. Tao J., Chang W., Shi Y.: Direction-finding of coherent sources via particle-velocity-field smoothing. IET Radar Sonar Novig. 2(2), 127–134 (2008)

    Article  Google Scholar 

  16. Rao B.D., Hari K.V.S.: Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise. IEEE Trans. Acoust. Speech Signal Process. 37(12), 1990–1995 (1989)

    Article  Google Scholar 

  17. Ottersten B., Viberg M., Kailath T.: Performance analysis of the total least squares ESPRIT algorithm. IEEE Trans. Signal Process. 39(5), 1122–1135 (1991)

    Article  MATH  Google Scholar 

  18. Rao B.D., Hari K.V.S.: Weighed subspace methods and spatial smoothing: analysis and comparison. IEEE Trans. Signal Process. 41(2), 788–803 (1993)

    Article  MATH  Google Scholar 

  19. Lemma A.N., van der Veen A.-J., Deprettere E.F.: Analysis of joint angle-frequency estimation using ESPRIT. IEEE Trans. Signal Process. 51(5), 1264–1283 (2003)

    Article  MathSciNet  Google Scholar 

  20. Viberg M., Ottersten B.: Sensor array processing based on subspace fitting. IEEE Trans. Signal Process. 39(5), 1110–1121 (1991)

    Article  MATH  Google Scholar 

  21. Nehorai A., Paldi E.: Acoustic vector-sensor array processing. IEEE Trans. Signal Process. 42(9), 2481–2491 (1994)

    Article  Google Scholar 

  22. Xin J., Sano A.: Computationally efficient subspace-based method for direction-of-arrival estimation without eigendecomposition. IEEE Trans. Signal Process. 52(4), 876–893 (2004)

    Article  MathSciNet  Google Scholar 

  23. Schmidt R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Wu Tao.

Additional information

This work was supported by the National Natural Science Foundation of China under Grants 60872088.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, JW., Chang, WX. & Cui, W. Direction-finding of coherent signals based on cylindrical vector-hydrophones array. SIViP 4, 221–232 (2010). https://doi.org/10.1007/s11760-009-0113-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-009-0113-8

Keywords

Navigation