Skip to main content
Log in

Medical image segmentation based on non-parametric mixture models with spatial information

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Because of too much dependence on prior assumptions, parametric estimation methods using finite mixture models are sensitive to noise in image segmentation. In this study, we developed a new medical image segmentation method based on non-parametric mixture models with spatial information. First, we designed the non-parametric image mixture models based on the cosine orthogonal sequence and defined the spatial information functions to obtain the spatial neighborhood information. Second, we calculated the orthogonal polynomial coefficients and the mixing ratio of the models using expectation-maximization (EM) algorithm, to classify the images by Bayesian Principle. This method can effectively overcome the problem of model mismatch, restrain noise, and keep the edge property well. In comparison with other methods, our method appears to have a better performance in the segmentation of simulated brain images and computed tomography (CT) images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

f :

Probability distribution function

X 1, . . . , X N :

Independent and identically distributed samples

e i :

The orthogonal basis

L 2([a, b]):

Hilbert orthogonal base of space

1/s :

The smoothing parameter

\({(a_{0,j},a_{1,j},\ldots,a_{K_{N_{j}},j})}\) :

The estimate of Fourier coefficients of condition probability density function

\({K_{N_j}}\) :

The point of cutoff in the expansion of cosine

N j :

The number of pixels of the jth class

g(1/s):

The Mean Integrated Squared Error (MISE)

N:

Sample number

h ij :

A spatial function

\({P(j|\bar{{x}}_i )}\) :

The probability of the neighboring pixels of x i labeled as \({\bar{x}_{i}}\) belonging to the jth class

NB(x i ):

A square window centered on pixel x i in the spatial domain

n :

The size of neighborhood

P NB(j|x i ):

The weighted posterior probability of current pixel x i with neighboring information

w j :

The weight of the jth component of mixture models

f j (x|θ j ):

The density function of the jth component

K :

The number of classes

j(x i ):

Represents the label of the class of the pixel x i

F(I):

Image segmentation quality criterion

I :

The image to be segmented

R :

The number of regions in the segmented image

A i :

The area or the number of pixels of the ith region

e i :

The average number of wrongly classified pixels of region i

C 1, C 2 :

The original image and segmented image of each pixel in the region

x :

The gray level of the pixel

α :

Threshold

P, R :

The quantities precision and recall

References

  1. Maulik U.: Medical image segmentation using genetic algorithms. IEEE Trans. Inf. Technol. Biomed. 13(2), 166–173 (2009)

    Article  Google Scholar 

  2. Wang J., Kong J., Lu Y., Qi M., Zhang B.: A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Comput. Med. Imaging Graph 32(8), 685–698 (2008)

    Article  Google Scholar 

  3. Khan S.S., Ahmad A.: Cluster center initialization algorithm for K-means clustering. Pattern Recognit. Lett. 25(11), 1293–1302 (2004)

    Article  Google Scholar 

  4. Chen J.M., Lu H., Song Y.Q.: A possibility fuzzy clustering algorithm based on the uncertainty membership. J. Comput. Res. Dev. 9, 1486–1491 (2008)

    Google Scholar 

  5. Chuang K.S., Tzeng H.L., Chen S., Wu J., Chen T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imag. 30, 9–15 (2006)

    Article  Google Scholar 

  6. Menezes R.: A kernel variogram estimator for clustered data. Scand. J. Stat. 35(1), 18–37 (2007)

    Article  MathSciNet  Google Scholar 

  7. Katkovnik V., Shmulevich I.: Kernel density estimation with adaptive varying window size. Pattern Recognit. Lett. 23(14), 1641–1648 (2002)

    Article  MATH  Google Scholar 

  8. Alfó M., Nieddu L., Vicari D.: Finite mixture models for mapping spatially dependent disease counts. Biom. J. 51(1), 84–97 (2009)

    Article  MathSciNet  Google Scholar 

  9. Guillemaud R., Brady M.: Estimating the bias field of MR images. IEEE Trans. Med. Imag. 16(3), 238–251 (1997)

    Article  Google Scholar 

  10. Wells W.M., Grimson W.L., Kikinis R., Jolesz F.A.: Adaptive segmentation of MRI data. IEEE Trans. Med. Imag. 15(4), 429–442 (1996)

    Article  Google Scholar 

  11. Bilmes, J.A.: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Berkeley, CA: International Computer Science Institute, April (1998), ICSI-TR-97-021

  12. Peel D., McLachlan G.J.: Robust mixture modelling using the t distribution. Stat. Comput. 10(4), 339–348 (2000)

    Article  Google Scholar 

  13. Lin T.I., Lee J.C., Yen S.Y.: Finite mixture modelling using the skew normal distribution. Stat. Sin. 17, 909–927 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Tsung I.L., Jack C.L.: Robust mixture modeling using the skew t distribution. Stat. Comput. 17(2), 81–92 (2007)

    Article  MathSciNet  Google Scholar 

  15. Fan S.: Image thresholding using a novel estimation method in generalized gaussian distribution mixture modeling. Neurocomputing 72(1–3), 500–512 (2008)

    Article  Google Scholar 

  16. Zribi M., Ghorbel F.: An unsupervised and non-parametric Bayesian classifier. Pattern Recognit. Lett. 24, 97–112 (2003)

    Article  MATH  Google Scholar 

  17. Zivkovic Z., van der Heijden F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

  18. Chan N.H., Lee Thomas C.M., Peng L.: On nonparametric local inference for density estimation. Comput. Stat. Data Anal. 54(2), 509–515 (2010)

    Article  MATH  Google Scholar 

  19. Roettger, S., Bauer, M., Stamminger, M.: Spatialized transfer functions. Eurographics-IEEE VGTC symposium on visualization (2005)

  20. Tang Y.G., Liu D., Guan X.P.: Multi-resolution image segmentation based on Gaussian mixture model. J. Syst. Eng. Electron. 17(4), 870–874 (2006)

    Article  MATH  Google Scholar 

  21. Cencov N.N.: Evaluation of an unknown distribution density from observations. Sov. Math. Dokl. 3, 1559–1562 (1962)

    Google Scholar 

  22. Gehringer K.R., Redner R.A.: Nonparametric probability density estimation using normalized B-Splines. Commun. Stat. Simul. Comput. 21(3), 849–878 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kronmal R., Tarter M.: The estimation of probability densities and cumulatives by Fourier series methods. J. Am. Stat. Assoc. 63, 925–952 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dempster A.P., Laird N.M., Rubin D.B.: Maximum likelihood from incomplete data via the E.M algorithm. J. R. Stat. B. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  25. BrainWeb:Simulated Brain Database. http://www.bic.mni.mcgill.ca/brainweb/

  26. Liu J., Yang Y.H.: Multiresolution color image segmentation. IEEE Trans. Pattern Anal. 16(7), 689–700 (1994)

    Article  Google Scholar 

  27. Martin D.R., Fowlkes C.C., Malik J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. 26(5), 530–549 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, YQ., Liu, Z., Chen, JM. et al. Medical image segmentation based on non-parametric mixture models with spatial information. SIViP 6, 569–578 (2012). https://doi.org/10.1007/s11760-010-0185-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-010-0185-5

Keywords

Navigation