Skip to main content
Log in

Iris segmentation using game theory

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Robust segmentation of an iris image plays an important role in iris recognition. However, the nonlinear deformations, pupil dilations, head rotations, motion blurs, reflections, nonuniform intensities, low image contrast, camera angles and diffusions, and presence of eyelids and eyelashes often hamper the conventional iris/pupil localization methods, which utilize the region-based or the gradient-based boundary-finding information. The novelty of this research effort is that we describe a new iris segmentation scheme using game theory to elicit iris/pupil boundaries from a nonideal iris image. We apply a parallel game-theoretic decision making procedure by modifying Chakraborty and Duncan’s algorithm, which integrates (1) the region-based segmentation and gradient-based boundary-finding methods and (2) fuses the complementary strengths of each of these individual methods. This integrated scheme forms a unified approach, which is robust to noise and poor localization, and less affected by weak iris/sclera boundaries. The verification and identification performance of the proposed method are validated using the ICE 2005, the UBIRIS Version 1, WVU Nonideal, and the CASIA Version 3 data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Daugman J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  2. Daugman J.G.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  3. Daugman J.G.: The importance of being random: statistical principles of iris recognition. Pattern Recogn. 36(2), 279–291 (2003)

    Article  Google Scholar 

  4. Ma L., Tan T., Wang Y., Zhang D.: Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1519–1533 (2003)

    Article  Google Scholar 

  5. Ma L., Tan T., Wang Y., Zhang D.: Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Process 13(6), 739–750 (2004)

    Article  Google Scholar 

  6. Boles W., Boashash B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Process 46(4), 1185–1188 (1998)

    Article  Google Scholar 

  7. Wildes R.P.: Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)

    Article  Google Scholar 

  8. Wildes R., Asmuth J., Green G., Hsu S., Kolczynski R., Matey J., McBride S.: A machine-vision system for iris recognition. Mach. Vis. Appl. 9, 1–8 (1996)

    Article  Google Scholar 

  9. Schuckers S.A.C., Schmid N.A., Abhyankar A., Dorairaj V., Boyce C.K., Hornak L.A.: On techniques for angle compensation in nonideal iris recognition. IEEE Trans. Syst. Man Cybern. B 37(5), 1176–1190 (2007)

    Article  Google Scholar 

  10. Bowyer K.W., Hollingsworth K., Flynn P.J.: Image understanding for iris biometrics: a survey. Comput. Vis. Image Underst. 110(2), 281–307 (2008)

    Article  Google Scholar 

  11. Daugman J.G.: New methods in iris recognition. IEEE Trans. Syst. Man Cybern. B 37(5), 1167–1175 (2007)

    Article  Google Scholar 

  12. Vatsa M., Singh R., Noore A.: Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans. Syst. Man Cybern. B 38(4), 1021–1035 (2008)

    Article  Google Scholar 

  13. Proenca H., Alexandre L.: Toward noncooperative iris recognition: a classification approach using multiple signatures. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 607–612 (2007)

    Article  Google Scholar 

  14. Zhang D., Yu L., Wang K.: The relative distance of key point based iris recognition. Pattern Recogn. 40(2), 423–430 (2007)

    Article  MATH  Google Scholar 

  15. Ross, A., Shah, S.: Segmenting Non-ideal irises using geodesic active contours. In: Biometric Consortium Conference of IEEE Biometrics Symposium, pp. 1–6 (2006)

  16. Shah, S., Ross, A.: iris segmentation using geodesic active contours. IEEE Trans. Info. Forensic Secur 4(4) (2009)

  17. Miyazawa K., Ito K., Aoki T., Kobayashi K., Nakajima H.: An effective approach for iris recognition using phase-based image matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1741–1755 (2008)

    Article  Google Scholar 

  18. Liu, X., Bowyer, K.W., Flynn, P.J.: Experiments with an improved iris segmentation algorithm. In: IEEE Workshop on Automatic Identification Advanced Technologies, pp. 118–123 (2005)

  19. Liu X., Bowyer K.W., Flynn P.J.: Experimental evaluation of iris recognition. IEEE Conf. Comput. Vis. Pattern Recogn. 3, 158–165 (2005)

    Google Scholar 

  20. Hollingsworth K.P., Bowyer K.W.: The best bits in an iris code. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 964–973 (2009)

    Article  Google Scholar 

  21. Sudha N., Puhan N.B., Xia H., Jiang X.: Iris recognition on edge maps. IET Comput. Vis. 3(1), 1–7 (2009)

    Article  Google Scholar 

  22. Monro D.M., Rakshit S., Zhang D.: DCT-based iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 586–595 (2007)

    Article  Google Scholar 

  23. Kong, A.W.K., Zhang, D., Kamel, M.S.: An analysis of IrisCode. IEEE Trans. Info. Forensic Secur. 19(2) (2010)

  24. Sun Z., Tan T.: Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 586–595 (2009)

    Google Scholar 

  25. Roy K., Bhattacharya P.: Iris Recognition in nonideal situations. In: Information Security Conference, Springer Lecture Note Series in Computer Science, vol. 5735, pp. 143–150 (2009)

  26. Roy, K., Bhattacharya, P.: Adaptive asymmetrical SVM and genetic algorithms based iris recognition. In: International Conference on Pattern Recognition, pp. 1–4 (2008)

  27. Roy, K., Bhattacharya, P., Suen, C.Y.: Towards nonideal iris recognition based on level set method, genetic algorithms and adaptive asymmetrical SVMs. Int. J. Eng. Appl. Artif. Intell. Elsevier (2010, Accepted) doi:10.1016/j.engappai.2010.06.014

  28. Kong, W., Zhang, D.: Accurate iris segmentation based on novel reflection and eyelash detection mode. In: IEEE International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 263–266 (2001)

  29. Kong W., Zhang D.: Detecting eyelash and reflections for accurate iris segmentation. Int. J. Pattern Recogn. Artif. Intell. 17(6), 1025–1034 (2003)

    Article  Google Scholar 

  30. Zhou Z., Du Y., Belcher C.: Transforming traditional iris recognition systems to work on non-ideal situations. IEEE Trans. Ind. Electr. 56(8), 3203–3213 (2009)

    Article  Google Scholar 

  31. He Z., Tan T., Sun Z., Qiu X.: Toward accurate and fast iris segmentation for iris biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1670–1684 (2009)

    Article  Google Scholar 

  32. He, Z., Sun, Z., Tan, T., Qiu, X., Zhong, C., Dong, W.: Boosting ordinal features for accurate and fast iris recognition. In: Proceedings of IEEE Computer Society Workshop Biometrics at the Computer Vision Pattern Recognition Conference (2008)

  33. Sung H., Lim J., Park J., Lee Y.: Iris recognition using collarette boundary localization. Int. Conf. Pattern Recogn. 4, 857–860 (2004)

    Google Scholar 

  34. Son B., Won H., Kee G., Lee Y.: Discriminant iris feature and support vector machines for iris recognition. IEEE Int. Conf. Image Process 2, 865–868 (2004)

    Google Scholar 

  35. Roy, K., Bhattacharya, P., Suen, Ching Y.: Recognition of unideal iris images using region-based active contour model and game theory. Int. Conf. Image Process, pp. 1705–1708 (2010)

  36. Masek, L., Kovesi, P.: Biometric Identification Systems Based on iris Patterns. MATLAB source code, The school of Computer Science and Software Engineering, The University of Western Australia, Australia (2003)

  37. Roy, K., Bhattacharya, P.: Optimal feature selection and classification for iris recognition. EURASIP J. Image Video Process. Article ID 743103, p. 20 (2008)

    Google Scholar 

  38. Roy, K., Bhattacharya, P.: Improvement of iris recognition performance using region-based active contour model, genetic algorithms and SVMs. Int. J. Pattern Recogn. Artif. Intell. (2010, Accepted)

  39. Puhan, N.B., Sudha, N., Anirudh, S.K.: Efficient segmentation Technique for noisy frontal view iris images using Fourier spectral density. Signal Image Video Process (2010, to appear)

  40. Chan T.F., Vese L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  41. Malladi R., Sethian J.A., Vemuri B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  42. Mumford D., Shah J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sethian J.A., Strain J.: Crystal growth and dendritic solidication. J. Comput. Phys. 98, 231–253 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Osher S., Sethian J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi Formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Chakraborty A., Duncan J.S.: Game-theoretic integration for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 21(1), 12–30 (1999)

    Article  Google Scholar 

  46. Chakraborty A., Staib L.H., Duncan J.S.: Deformable boundary finding in medical images by integrating gradient and region information. IEEE Trans. Pattern Anal. Mach. Intell. 15(6), 859–870 (1996)

    Google Scholar 

  47. Fitzgibbon A., Pilu M., Fisher R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21, 476–480 (1999)

    Article  Google Scholar 

  48. Gonzalez R.C., Woods R.E.: Digital image processing, 3rd edn. Prentice Hall, New Jersey (2007)

    Google Scholar 

  49. Jensen A., La Cour-Harbo A.: Ripples in Mathematics: The Discrete Wavelet Transform. Springer, Berlin (2001)

    MATH  Google Scholar 

  50. Mallat S., Hwang W.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38(2), 617–643 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  51. Dutta P.K.: Strategies and Games: Theory and Practice. MIT Press, Cambridge (1999)

    Google Scholar 

  52. Iris Challenge Evaluation (ICE) dataset found at http://iris.nist.gov/ICE/

  53. CASIA-IrisV3, http://www.cbsr.ia.ac.cn/IrisDatabase.htm

  54. UBIRIS dataset obtained from Dept. of Computer Sci., University of Beira Interior, Portugal. http://iris.di.ubi.pt/

  55. Iris Dataset obtained from West Virginia University (WVU). http://www.citer.wvu.edu/biometric_dataset_collections

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, K., Bhattacharya, P. & Suen, C.Y. Iris segmentation using game theory. SIViP 6, 301–315 (2012). https://doi.org/10.1007/s11760-010-0193-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-010-0193-5

Keywords

Navigation