Skip to main content

Advertisement

Log in

Binary genetic algorithm-based pattern LUT for grayscale digital half-toning

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Grayscale digital half-toning is a popular technique to reproduce grayscale images with devices that can support only two levels at output, i.e., black and white. Printers, LCD displays, etc. are some common examples of such devices. Considering 0 and 1 as black and white, respectively, this can be represented as an image-wise binary pattern generation process. The binary patterns are aimed to retain the local tonal and structural characteristics of grayscale image for a faithful illusion of the original grayscale image. Apart from tonal and structural characteristics retention, desired blue-noise characteristics also contribute significantly toward eye pleasant appearance of half-tone images. The paper presents a binary genetic algorithm-based approach to generate such binary patterns through optimizing randomly generated binary strings against a visual cost function. Paper also presents a pattern look-up-table (LUT)-based approach toward conventional clustered dot ordered dithering which is suitable for devices like laser or offset printers that cannot recognize individual pixels. The pattern LUT approach is driven toward green-noise characteristics instead of the blue-noise characteristics. The results obtained with test images are presented pictorially and evaluated through half-tone quality evaluation metrics. The evaluation results and comparison with state-of-art techniques shows the potential of presented technique for practical implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

f :

Radial spatial frequency in cycles/degree

f x :

Radial spatial frequency in horizontal direction

f y :

Radial spatial frequency in vertical direction

k :

Viewing distance in inch

η :

Positive integer expressing the frequency quantization

Δ:

Spacing between two individual addressable points

θ :

Angle between f x and f y

s(θ):

Measure for directional artifact sensitivity of HVS

k mn :

Viewing distance for pixel located at (m, n) in inch

l mn and s mn :

Image characteristics driving the adaptive HVS filter

g(m, n):

Original grayscale image with (m, n) as pixel position index

h(m, n):

Halftone image with (m, n) as pixel position index

dm and dn :

Image characteristics driving s mn

M × N :

Image size

D m :

Distance map used for HVS filter

μ g :

Local average intensity of HVS filtered original image

μ h :

Local average intensity of HVS filtered half-tone image

L gh :

Tonal similarity measure between original and half-tone images

S gh :

Structural closeness parameter between original and half-tone images

σ g :

Local standard deviation in HVS filtered original image

σ h :

Local standard deviation in HVS filtered half-tone image

σ gh :

Cross-correlation factor between original and half-tone images

p mn :

Minority pixel value in halftone

d p :

Principle distance between minority pixels

d mn :

Distance between minority pixel at (m, n) and its nearest minority pixel

D gh :

Distortion measure to address blue-noise characteristic

h mn :

Binary value of halftone image at (m, n)

\({\varphi}\) :

Visual cost function

w 1 , w 2 , w 3 :

Weights that can be used for prioritizing parameters in \({\varphi }\)

C p :

Crossover probability in BGA

μ :

Mutation rate in BGA

g :

Constant grayscale value

References

  1. Ulichney R.: Digital Halftoning, Chap. 1, pp. 1–14. MIT Press, USA (1987)

    Google Scholar 

  2. Nishida H.: Adaptive model-based digital halftoning incorporating image enhancement. Pattern Recogn. 34(9), 1790–1811 (2001)

    Article  Google Scholar 

  3. Mese M., Vaidyanathan P.P.: Recent advances in digital half-toning and inverse half-toning methods. IEEE Trans. Circuits Syst. Regular Pap. 49(6), 790–805 (2002)

    Article  Google Scholar 

  4. Judice C.N., Jarvis J.F., Ninke W.H.: Using ordered dither to display continuous tone pictures on an AC plasma panel. Proc. SID 15(4), 161–169 (1974)

    Google Scholar 

  5. Li P., Allebach J.P.: Look-up-table based halftoning algorithm. IEEE Trans. Image Process. 9(9), 1593–1603 (2000)

    Article  Google Scholar 

  6. Asano T.: Digital half-toning algorithm based on random space-filling curve. IEICE Trans. Fundament. Electron. Commun. Comput. Sci. E82A(3), 553–556 (1999)

    Google Scholar 

  7. Zhang Y.: Space-filling curve ordered dither. Comput. Graphics 22(4), 559–563 (1998)

    Article  Google Scholar 

  8. Metaxas P.T.: Parallel digital halftoning by error-diffusion. ACM Int. Conf. Proc. Ser. 41, 35–41 (2003)

    Google Scholar 

  9. Hanaoka C., Taguchi A.: An error diffusion algorithm with data-dependent prefiltering. Electron. Commun. Jpn (Part III: Fundament. Electron. Sci.) 89(5), 1–11 (2006)

    Article  Google Scholar 

  10. Eschbach R., Knox K.: Error diffusion algorithm with edge enhancement. J. Opt. Soc. Am. A 8(12), 1844–1850 (1991)

    Article  Google Scholar 

  11. Anastassiou D.: Error diffusion coding for A/D conversion. IEEE Trans. Circuits Syst. Regul. Pap. 36(9), 1175–1186 (1989)

    Article  MathSciNet  Google Scholar 

  12. Shoop B.L., Ressler E.K., Sayles A.H., Hall D.A.: A smart pixel implementation of an error diffusion neural network for digital halftoning. Int. J. Optoelectron. 11(3), 217–228 (1997)

    Google Scholar 

  13. Sullivan J.R., Ray L.A., Miller R.: Design of minimum visual modulation halftone patterns. IEEE Trans. Syst. Man Cybern. 21(1), 33–38 (1991)

    Article  Google Scholar 

  14. Ulichney R.A.: The void-and-cluster method for dither array generation. Proc. SPIE Hum. Vis. Visual Process. Digital Displays IV 1913, 332–343 (1993)

    Article  Google Scholar 

  15. Allebach J.P.: DBS: retrospective and future directions. Proc. SPIE 4300, 358–376 (2001)

    Article  Google Scholar 

  16. Wong P.W.: Entropy-constrained halftoning using multipath tree coding. IEEE Trans. Image Process. 6(11), 1567–1579 (1997)

    Article  Google Scholar 

  17. Newbern J., Michael B. Jr: Generation of blue noise arrays by genetic algorithm. Proc. SPIE 3016, 441–450 (1997)

    Article  Google Scholar 

  18. Kim S.H., Allebach J.P.: Impact of HVS models on model-based halftoning. IEEE Trans. Image Process. 11(3), 258–269 (2002)

    Article  Google Scholar 

  19. Ulichney, R.: Digital Halftoning, Chap. 8. 233–238. MIT Press, USA (1987)

  20. Miorandi D., Yamamoto L., Pellegrini F.D.: A survey of evolutionary and embryogenic approaches to autonomic networking. Comput. Netw. 54(6), 944–959 (2010)

    Article  MATH  Google Scholar 

  21. Chu C.H., Kottapalli M.S.: Genetic algorithm approach to visual model-based halftone pattern design. Proc. SPIE 1606, 470–481 (1991)

    Article  Google Scholar 

  22. Park S.-H., Kang K.-M., Kim C.-W.: Estimation of error diffusion kernel using genetic algorithm. Proc. SPIE 3300, 330–340 (1998)

    Article  Google Scholar 

  23. Lui, K.-C., Fung, Y.-H., Chan, Y.-H.: Restoring halftoned color-quantized image with genetic algorithm. In: Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 202–205 (2004)

  24. Mantere T., Alander J.T.: Automatic image generation by genetic algorithm for testing halftoning methods. Proc. SPIE 4197, 297–308 (2000)

    Article  Google Scholar 

  25. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, Chap. 2. 27–50. Wiley-Interscience, USA (2004)

  26. Lau D.L., Arce G.R., Gallagher N.C.: Green-noise digital halftoning. Proc. IEEE 86(12), 2424–2444 (1998)

    Article  Google Scholar 

  27. Lau D., Ulichney R., Arce G.: Fundamental characteristics of halftone textures: blue-noise and green-noise. IEEE Signal Process. Mag. (invited paper) 20(4), 28–38 (2003)

    Article  Google Scholar 

  28. Lau D.L., Arce G.R., Gallagher N.C.: Digital halftoning by means of green-noise masks. J. Opt. Soc. Am. 16, 1575–1586 (1999)

    Article  Google Scholar 

  29. Levin, R.: Output dependant feedback in error diffusion halftoning. In: Proceedings of IS&T 8th International Congress on Advances in Non-Impact Printing Technologies, Williamsburg, VA, Oct. 25–30, 280–282 (1992)

  30. Damera-Venkata N., Evans B.L.: Adaptive threshold modulation for error diffusion halftoning. IEEE Trans. Image Process. 10(1), 104–116 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Damera-Venkata N., Evans B.L.: FM halftoning via block error diffusion. IEEE Int. Conf. Image Process. 2, 1081–1084 (2001)

    Google Scholar 

  32. Lau D.L., Arce G.R., Gallagher N.C.: Digital color halftoning via generalized error-diffusion and multichannel green-noise masks. IEEE Trans. Image Process. 9(5), 923–935 (2000)

    Article  Google Scholar 

  33. Lee C., Allebach J.P.: The hybrid screen—improving the breed. IEEE Trans. Image Process. 19(2), 435–450 (2010)

    Article  MathSciNet  Google Scholar 

  34. Mannos J.L., Sakrison D.J.: The effects of a visual fidelity criterion on the encoding of images. IEEE Trans. Inform. Theory IT-20, 525–536 (1974)

    Article  Google Scholar 

  35. Guo J.M.: A new model-based digital halftoning and data hiding designed with LMS optimization. IEEE Trans. Multimedia 9(4), 687–699 (2007)

    Article  Google Scholar 

  36. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  37. Pang, W.-M., Qu, Y., Wong, T.-T., Cohen-Or, D., Heng, P.A.: Structure aware halftoning. ACM Trans. Graph. 27(3), art.no. 89 (2008)

    Google Scholar 

  38. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory, Chap. 2. 21–34. MIT Press, USA (1999)

  39. Man K.F., Tang K.S., Kwong S.: Genetic Algorithms: Concepts and Designs, Chap. 1, pp. 7–11. Springer, London (1999)

    Book  Google Scholar 

  40. Mitsa T., Parker K.: Digital halftoning using a blue noise mask. J. Opt. Soc. Am. A 9, 1920–1929 (1992)

    Article  Google Scholar 

  41. Monga, V., Venkata-Damera, N., Rehman, H., Evans, B.L.: http://users.ece.utexas.edu/~bevans/projects/halftoning/toolbox,2002. Accessed 15th July (2009)

  42. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it?. IEEE Sig. Proc. Magazine, 98–117 (2009)

  43. Li H., Mould D.: Contrast aware halftoning. Comput. Graph. Forum 29(2), 273–280 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpitam Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, A., Tudu, B. & Paul, K.C. Binary genetic algorithm-based pattern LUT for grayscale digital half-toning. SIViP 7, 377–388 (2013). https://doi.org/10.1007/s11760-011-0255-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0255-3

Keywords

Navigation