Skip to main content
Log in

Multiplicative filtering in the fractional Fourier domain

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this article, we investigate the multiplicative filtering in the fractional Fourier transform (FRFT) domain based on the generalized convolution theorem which states that the convolution of two signals in time domain results in simple multiplication of their FRFTs in the FRFT domain. In order to efficiently implement multiplicative filtering, we express the generalized convolution structure by the conventional convolution operation. Utilizing the generalized convolution structure, we convert the multiplicative filtering in the FRFT domain easily to the time domain. Based on the model of multiplicative filtering in the FRFT domain, a practical method is proposed to achieve the multiplicative filtering through convolution in the time domain. This method can be realized by classical Fast Fourier transform (FFT) and has the same capability compared with the method achieved in the FRFT domain. As convolution can be performed by FFT, this method is more useful from practical engineering perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Namias V.: The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl. 25, 241–265 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida L.B.: The fractional Fourier transform and time- frequency representations. In: IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  3. Ozaktas H.M., Zalevsky Z., Kutay M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2001)

    Google Scholar 

  4. Sejdic E., Djurovic I., Stankovic L.: Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal process. 91, 1351–1369 (2011)

    Article  MATH  Google Scholar 

  5. Ozaktas H.M., Arikan O., Kutay M.A., Bozdagi G.: Digital computation of the fractional Fourier transform. in: IEEE Trans. Signal Process. 44, 2141–2150 (1996)

    Article  Google Scholar 

  6. Kutay M.A., Ozaktas H.M., Arikan O., Onural L.: Optimal filtering in fractional Fourier domain. In: IEEE Trans. Signal Process. 45, 1129–1143 (1997)

    Article  Google Scholar 

  7. Durak L., Aldirmaz S.: Adaptive fractional Fourier domain filtering. Signal process. 90, 1188–1196 (2010)

    Article  MATH  Google Scholar 

  8. Lohmann A.W., Soffer B.H.: Relationship between the Radon-Wigner and the fractional Fourier transform. J. Opt. Soc. Am. A. 11, 1798–1801 (1994)

    Article  MathSciNet  Google Scholar 

  9. Pei S.C., Ding J.J.: Relations between fractional operations and time-frequency distributions, and their applications. In: IEEE Trans. Signal Process. 49, 1638–1655 (2001)

    Article  MathSciNet  Google Scholar 

  10. Pei S.C., Ding J.J.: Fractional Fourier transform, wigner distribution, and filter design for stationary and nonstationary random processes. In: IEEE Trans. Signal Process. 58, 4079–4092 (2010)

    Article  MathSciNet  Google Scholar 

  11. Zayed A.I.: On the relationship between the Fourier transform and fractional Fourier transform. In: IEEE Signal Process. Lett. 3, 310–311 (1996)

    Article  Google Scholar 

  12. Ozaktas H.M., Aytur O.: Fractional Fourier domains. Signal Process. 46, 119–124 (1995)

    Article  MATH  Google Scholar 

  13. Cariolaro G., Erseghe T., Kraniauskas P., Laurenti N.: A unified framework for the fractional Fourier transform. In: IEEE Trans. Signal Process. 46, 3206–3219 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erseghe T., Kraniauskas P., Cariolaro G.: Uniform fractional Fourier transform and sampling theorem. In: IEEE Trans. Signal Process. 47, 3419–3423 (1999)

    Article  MATH  Google Scholar 

  15. Xia X.: On bandlimited signals with fractional Fourier transform. In: IEEE Signal Process. Lett. 3, 72–74 (1996)

    Article  Google Scholar 

  16. Almeida L.B.: Product and convolution theorems for the fractional Fourier transform. In: IEEE Signal Process. Lett. 4, 15–17 (1997)

    Article  Google Scholar 

  17. Zayed A.I.: A Product and convolution theorems for the fractional Fourier transform. In: IEEE Signal Process. Lett. 5, 101–103 (1998)

    Article  Google Scholar 

  18. Akay O., Boudreaux-Bartels G.F.: Fractional convolution and correlation via operatior methods and application to detection of linear FM signals. In: IEEE Trans. Signal Process. 49, 979–993 (2001)

    Article  Google Scholar 

  19. Sharma K.K., Joshi S.D.: Extrapolation of signals using the method of alternating projections in fractional Fourier domain. Signal, Image, Video Process. 2(3), 177–182 (2008)

    Article  Google Scholar 

  20. Sharma K.K., Joshi S.D.: Fractional Laplace transform. Signal, Image, Video Process. 4(3), 377–379 (2010)

    Article  MATH  Google Scholar 

  21. Deng B., Tao R., Wang Y.: Convolution theorems for the linear canonical transform and their applications. Sci. China Ser. F: Inform. Sci. 49, 592–603 (2006)

    Article  MathSciNet  Google Scholar 

  22. Torres R., Pellat-Finet P., Torres Y.: Fractional convolution, fractional correlation and their translation invariance properties. Signal Process. 90, 1976–1984 (2010)

    Article  MATH  Google Scholar 

  23. Sharma K.K., Joshi S.D.: Papoulis-like generalized sampling expansions in fractional Fourier domains and their application to superresolution. Opt. Commun. 278, 52–59 (2007)

    Article  Google Scholar 

  24. Wei D.Y., Ran Q.W., Li Y.M., Ma J., Tan L.Y.: A convolution and product theorem for the linear canonical transform. In: IEEE Signal Process. Lett. 16, 853–856 (2009)

    Article  Google Scholar 

  25. Wei, D.Y., Ran, Q.W., Li, Y.M.: A convolution and correlation theorem for the linear canonical transform and its application, Circuits syst. Signal Process. (2011). doi:10.1007/s00034-011-9319-4

  26. Wei D.Y., Ran Q.W., Li Y.M.: Generalized sampling expansion for band-limited signals associated with the fractional Fourier transform. In: IEEE Signal Process. Lett. 17, 595–598 (2010)

    Article  Google Scholar 

  27. Wei, D.Y., Ran, Q.W., Li, Y.M.: Sampling of fractional bandlimited signals associated with fractional Fourier transform, Optik-Int. J. Light Electron Opt. (2011). doi:10.1016/j.ijleo.2011.02.024, (2011)

  28. Ran Q.W., Zhao H., Tan L.Y., Ma J.: Sampling of bandlimited signals in fractional Fourier transform domain. Circuits syst. Signal Process 29, 459–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ozaktas H.M., Barshan B., Mendlovic D., Onural L.: Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms. J. Opt. Soc. Am. A. 11, 547–559 (1994)

    Article  MathSciNet  Google Scholar 

  30. Erden M.F., Kutay M.A., Ozaktas H.M.: Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration. In: IEEE Trans. Signal Process. 47, 1458–1462 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyun Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, D., Ran, Q. Multiplicative filtering in the fractional Fourier domain. SIViP 7, 575–580 (2013). https://doi.org/10.1007/s11760-011-0261-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0261-5

Keywords

Navigation