Skip to main content
Log in

Morphologic gain-controlled regularization for edge-preserving super-resolution image reconstruction

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Total Variation or Bilateral Total variation-based regularization of ill-posed super-resolution (SR) problem is well established. However, the SR image reconstructed by this method produces ringing artifacts near strong edges. Second, the extension of SR Imaging to SR video always desire faster SR reconstruction process. We develop a gain-controlled-based locally adaptive regularization technique for SR reconstruction for faster convergence and more detail reconstruction while suppressing the ringing artifacts. We present an iterative process for the model and perform a series of numerical experiments to show evidence of the good performance of the numerical scheme and the proposed gain-controlled regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bose N.K., Lertrattanapanich S., Chappalli M.B.: Super resolution with second generation wavelets. Signal Process. Image Commun. 19(5), 387–391 (2004)

    Article  Google Scholar 

  2. Brown L.: A survey of image registration techniques. ACM Comput. Surv. 24(4), 325–376 (1992)

    Article  Google Scholar 

  3. Chakrabarti A., Rajagopalan A., Chellappa R.: Super-resolution of face images using kernel PCA—based prior. In: IEEE Trans. Multimedia 9(4), 888–892 (2007)

    Article  Google Scholar 

  4. Chan, T.F., Wong, C.K.T.: Multichannel image deconvolution by total variation regularization. In: Proceedings of SPIE, pp. 358–366. San Diego (1997)

  5. Elad M., Feuer A.: Restoration of a single super-resolution image from several blurred, noisy, and under-sampled measured images. In: IEEE Trans. Image Process. 6(12), 1646–1658 (1997)

    Article  Google Scholar 

  6. Farsiu S., Robinson M., Elad M., Milanfar P.: Fast and robust multiframe super-resolution. In: IEEE Trans. Image Process. 13(10), 1327–1344 (2004)

    Article  Google Scholar 

  7. Freeman W.T., Jones T.: Example-based super resolution. In: IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  8. Gordon R., Bender R., Herman G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–482 (1970)

    Article  Google Scholar 

  9. Irani M., Peleg S.: Improving resolution by image registration. CVGIP: Graph. Models Image Process. 53(3), 231–239 (1991)

    Article  Google Scholar 

  10. Kaczmarz S.: Angenherte auflsung von systemen linearer gleichungen. Bull. Int. Acad. Polon. Sci. Lettres. Cl. Sci. Math. Nat. 35(A), 355–357 (1937)

    Google Scholar 

  11. Katsaggelos A.: Introduction—Digital Image Restoration, Springer Series in Information Science. Springer, Berlin (1991)

    Google Scholar 

  12. Kim S.P., Bose N.K., Valenzuela H.M.: Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans. Acoust. Speech Signal Process. 38(6), 1013–1027 (1990)

    Article  Google Scholar 

  13. Lertrattanapanich S., Bose N.: High resolution image formation from low resolution frames using Delaunay triangulation. In: IEEE Trans. Image Process. 11(12), 1427–1441 (2002)

    Article  MathSciNet  Google Scholar 

  14. Li X., Hu Y., Gao X., Tao D., Ning B.: A multi-frame image super-resolution method. Signal Process 90(2), 405–414 (2010)

    Article  MATH  Google Scholar 

  15. Milanfar, P.: Super Resolution Dataset. http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html (2007). (Online; accessed 2007)

  16. Nguyen, N., Milanfar, P.: An efficient wavelet-based algorithm for image super resolution. In: Proceedings of International Conference on Image Processing, vol. 2, pp. 351–354. Vancouver. (2000)

  17. Nguyen N., Milanfar P., Golub G.: Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. In: IEEE Trans. Image Process. 10(9), 1299–1308 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nguyen N., Milanfar P., Golub G.H.: A computationally efficient image super resolution algorithm. In: IEEE Trans. Image Process. 10(4), 573–583 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Park S.C., Park M.K., Kang M.G.: Super-resolution image reconstruction: a technical overview. In: IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  20. Patti A., Altunbasak Y.: Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants. In: IEEE Trans. Image Process. 10(1), 179–186 (2001)

    Article  Google Scholar 

  21. Rudin L., Osher S., Fatemi E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  22. Schulz R., Stevenson R.: Extraction of high-resolution frames from video sequences. In: IEEE Trans. Image Process. 5(6), 996–1011 (1996)

    Article  Google Scholar 

  23. Shechtman E., Caspi Y., Irani M.: Space-time super-resolution. In: IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 531–545 (2005)

    Article  Google Scholar 

  24. Shen H., Zhang L., Huang B., Li P.: A MAP approach for joint motion estimation segmentation and super resolution. IEEE Trans. Image Process. 16(2), 479–490 (2007)

    Article  MathSciNet  Google Scholar 

  25. Soille P.: Morphological Image Analysis—Principles and Applications. Engineering Online Library. Springer, Berlin (2003)

    Google Scholar 

  26. Stark H., Oskoui P.: High resolution image recovery from image plane arrays, using convex projections. J. Opt. Soc. Am. A 6(11), 1715–1726 (1989)

    Article  Google Scholar 

  27. Tekalp, A.M., Ozkan, M.K., Sezan, M.I.: High resolution image re-construction from lower-resolution image sequences and space-varying image restoration. In: Proceedings of the IEEE International Conference of Acoustics, pp. 169–172. Speech and Signal Processing, San Francisco (1992)

  28. Tian J., Chen L., Ma L., Yu W.: Phase-driven spatially-variant regularization for image resolution enhancement. Int. J. Electron. Commun. 21(11), 975–977 (2011)

    Article  Google Scholar 

  29. Tom, B.C., Katsaggelos, A.K.: Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images. In: Proceedings of the IEEE International Conference on Image Processing (ICIP-95), vol. 2, pp. 539–542. (1995)

  30. Tom, B.C., Katsaggelos, A.K., Galatsanos, N.P.: Reconstruction of a high resolution image from registration and restoration of low resolution images. In: Proceedings of the IEEE International Conference on Image Processing (ICIP-94), vol. 3, pp. 553–557. (1994)

  31. Tsai R.Y., Huang T.S.: Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 6(1), 13–27 (1984)

    Article  MathSciNet  Google Scholar 

  32. Vandewalle P., Susstrunk S., Vetterli M.: A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP J. Appl. Signal Process. (Special Issue Super Resolut.) 2006(11), 233–233 (2006)

    Google Scholar 

  33. Woods, N.A., Galatsanos, N.P., Katsaggelos, A.K.: Em-based simultaneous registration and restoration, and interpolation of super-resolved images. In: Proceedings of the IEEE International Conference on Image Processing(ICIP-03), vol. 11, pp. 303–306. (2006)

  34. Xiao, L., Wei, Z.: A super-resolution reconstruction via local and contextual information driven partial differential equations. In: Proceedings of Fourth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 726–730. Haikou (2007)

  35. Zhang X., Lam E.Y., Wu E.X., Wong K.K.: Application of Tikhonov regularization to super-resolution reconstruction of brain MRI image. Med. Imaging Inform. 49(87), 51–56 (2008)

    Article  Google Scholar 

  36. Zitov B., Flusser J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulak Purkait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purkait, P., Chanda, B. Morphologic gain-controlled regularization for edge-preserving super-resolution image reconstruction. SIViP 7, 925–938 (2013). https://doi.org/10.1007/s11760-011-0281-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0281-1

Keywords

Navigation