Skip to main content
Log in

Wavelet weighted distortion measure for retinal images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The diagnostic features of retinal images undergo changes in the course of processing such as for storage, retrieval and transmission. The conventional mean square error and peak signal to noise ratio have limitations in quantifying these local distortions. In this work, a novel wavelet weighted distortion measure (WWDM) is proposed for accurate quantification of diagnostic information loss. The wavelet analysis of retinal image shows that the significant information of a retinal feature is captured by a few subbands. The new approach is based on assigning a weight to each of the subbands depending on its diagnostic significance. The proposed distortion measure is defined as the sum of wavelet weighted root of the normalized mean square error of subbands expressed in percentage. The experimental results show that WWDM performs better in capturing the distortion in retinal features, whereas for distortion in clinically nonsignificant regions, it gives a low value. The qualitative evaluation using Pearson linear correlation coefficient and Spearman rank order correlation coefficient is performed for different artifacts. The investigation shows better correlation values between WWDM and the subjective scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eikelboom R.H., Yogesan K., Barry C.J., Constable I.J., Kearney M.T., Jitskaia L., House P.H.: Methods and limits of digital image compression of retinal images for telemedicine. Investig. Ophthalmol. Vis. Sci. 41(7), 1916–1924 (2000)

    Google Scholar 

  2. Pizurica A., Philips W.: A versatile wavelet domain noise filtration technique for medical imaging. In: IEEE Trans. Med. Imag. 22(3), 323–331 (2003)

    Article  Google Scholar 

  3. Hwang W., Chine C., Li K.: Scalable medical data compression and transmission using wavelet transform for telemedicine applications. In: IEEE Trans. Inf. Technol. Biomed. 7(1), 54–63 (2003)

    Article  Google Scholar 

  4. Cosman P., Gray R.M., Olshen R.A.: Evaluating the quality of compressed medical images: SNR, subjective rating and diagnostic accuracy. In: Proc. IEEE 82(6), 919–932 (1994)

    Article  Google Scholar 

  5. Wong S., Zaremba L., Gooden D., Huang H.K.: Radiological image compression: a review. Proc. IEEE 83(2), 194–219 (1995)

    Article  Google Scholar 

  6. Cree M.J., Jelinek H.F.: The effect of JPEG compression on automated detection of microaneurysms in retinal images. Proc. SPIE-IS&T Electron. Imaging 6813, 68130M–68130M-10 (2008)

    Article  Google Scholar 

  7. Eskicioglu, A.M.: Quality measurement for monochrome compressed images in the past 25 years. In: Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, Istanbul, Turkey, vol. 4, pp. 1907–1910 (2000)

  8. Lai Y.K., Kuo C.C.J.: A Harr wavelet approach to compressed image quality measurements. J. Vis. Commun. Image Represent. 11, 17–40 (2000)

    Article  Google Scholar 

  9. Dumic E., Grgic S., Grgic M.: New image-quality measure based on wavelets. J. Electron. Imaging 19(1), 011–018 (2010)

    Article  Google Scholar 

  10. Gao Z., Zheng Y.F.: Quality constrained compression using DWT-based image quality metric. In: IEEE Trans. Circuits Syst. Video Technol. 18(7), 910–922 (2008)

    Article  Google Scholar 

  11. Lee, S., Wang, Y.: Automatic retinal image quality assessment and enhancement. In: Proceedings of SPIE Image Processing, SPIE Conference on Image Processing, pp. 1581–1590 (1999)

  12. Lalonde, M., Gagnon, L., Boucher, M.C.: Automatic visual quality assessment in optical fundus images. In: Proceedings of the Vision Interface, pp. 259–264 (2001)

  13. Wang Z., Bovik A.C., Sheikh H., Simoncelli E.P.: Image quality assessment: from error visibility to structural similarity. In: IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  14. Mallat S.: A theory for multiresolution signal decomposition: the wavelet representation. In: IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  15. Unser M., Aldroubi A.: A review of wavelets in biomedical applications. Proc. In: IEEE 84, 626–638 (1996)

    Article  Google Scholar 

  16. Sinthanayothin C., Boyce J., Cook H., Williamson T.: Automated localization of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83(8), 902–910 (1999)

    Article  Google Scholar 

  17. Mahfouz A.E., Fahmy A.S.: Fast localization of the Optic disc using projection of image features. In: IEEE Trans. Image Process. 19(12), 3285–3289 (2010)

    Article  MathSciNet  Google Scholar 

  18. Nirmala S.R., Dandapat S., Bora P.K.: Wavelet weighted blood vessel distortion measure for retinal images. Biomed. Signal Process. Control 5(4), 282–291 (2010)

    Article  Google Scholar 

  19. Rosso O., Blanco S., Yordanova J., Kolev V., Figliola A., Sahurmann M., Basar E.: Wavelet entropy: a new tool for analysis of short brain electrical signal. Neurosci. Methods 105, 65–75 (2001)

    Article  Google Scholar 

  20. http://www.isi.uu.nl/Research/Databases/DRIVE/

  21. Chen T.J., Chuang K.S., Wu J., Chen S.C., Hwang I.M., Jan M.L.: Quality degradation in lossy wavelet image compression. J. Digit. Imaging 16(2), 210–215 (2003)

    Article  Google Scholar 

  22. VQEG.: final report from the video quality experts group on the validation of objective models of video quality assessment (online). Available: http://www.vqeg.org (2003)

  23. Wallace G.K.: The JPEG still picture compression standard. In: IEEE Trans. Consum. Electron. 38(1), 18–34 (1992)

    Google Scholar 

  24. Said A., Pearlman W.A.: A new fast and efficient image codec based on set partitioning in hierarchical trees. In: IEEE Trans. Circuits Syst. Video Technol. 6(3), 243–250 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Nirmala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nirmala, S.R., Dandapat, S. & Bora, P.K. Wavelet weighted distortion measure for retinal images. SIViP 7, 1005–1014 (2013). https://doi.org/10.1007/s11760-012-0290-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0290-8

Keywords

Navigation