Skip to main content
Log in

Progressive medical image coding using binary wavelet transforms

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a new algorithm for progressive medical image coding is presented. An 8-bit gray scale image is divided into eight binary bit-planes, and then, binary wavelet transform is performed on each bit-plane to extract the three-level multi-resolution binary wavelet transformed images. Starting from the most significant bit-plane, each bit-plane is encoded using quadtree-based partitioning scheme to exploit the energy concentration in the high-frequency subbands. Experiments are conducted on ultrasound, MRI and CT images to prove the effectiveness of the proposed algorithm. The results show a significant improvement in terms of bit-rate for the required peak signal-to-noise ratio and correlation coefficient as compared to the existing state-of-art progressive image coding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, C.C., Shine, F.C., Chen, T.S.: A new scheme of progressive image transmission based on bit-plane method. In: Proceedings of Fifth Asian Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference, Beijing, China, pp. 892–895 (1999)

  2. Jiang, J.H., Chang, C.C., Chen, T.S.: Selective progressive image transmission using diagonal sampling technique. In: Proceedings of International Symposium on Digital Media Information Base, Nara, Japan, pp. 56–67 (1997)

  3. Chang C.C., Ja J., Chen T.S.: A fast reconstruction method for transmitting images progressively. Proc. IEEE. Trans. Consumer Electron. 44(4), 1225–1233 (1998)

    Article  Google Scholar 

  4. Chung, K.L., Tseng, S.Y.: New progressive image transmission based on quadtree and shading approach with resolution control. Proc. J. Pattern Recognit. 22, 1545–1555

  5. Hung K.L., Chang C.C.: New irregular sampling coding method for transmitting images progressively. Proc. IEEE Vis. Image Signal Process. 105(1), 44–50 (2003)

    Article  Google Scholar 

  6. Yu-Chen H., Ji-Han J.: Low complexity progressive image transmission scheme based on quadtree tree segmentation. Proc. J. Real Time Imaging 11, 59–70 (2005)

    Article  Google Scholar 

  7. Wang L., Goldberg M.: Progressive image transmission using vector quantization on images in pyramid form. Proc. IEEE Trans. Commun. 37(12), 1341–1348 (1989)

    Google Scholar 

  8. Goldberg M., Wang L.: Comparative performance of pyramid data structures for progressive image transmission. Proc. IEEE Trans. Commun. 39(4), 540–548 (1991)

    Article  Google Scholar 

  9. Aiazzi B., Alparone L., Baronti S.: A reduced Laplacian pyramid for lossless and progressive image transmission. Proc. IEEE Trans. Commun. 44(1), 18–22 (1996)

    Article  MATH  Google Scholar 

  10. Qiu G.: A progressively predictive image pyramid for efficient lossless coding. Proc. IEEE Trans. Image Process. 8(1), 109–115 (1999)

    Article  Google Scholar 

  11. Huang Y., Driezen H.M., Galatsanos N.P.: Prioritized DCT for compression and progressive transmission of images. Proc. IEEE Trans. Image Process. 1(4), 477–487 (1992)

    Article  Google Scholar 

  12. Shapiro J.M.: Embedded image coding using zerotrees of wavelet coefficients. Proc. IEEE Trans. Image Process. 41(12), 3445–3462 (1993)

    Article  MATH  Google Scholar 

  13. Zandi, A., Allen, J.D., Schwartz, E.L., Boliek, M.: CREW: compression with reversible embedded wavelets. In: Proceedings of IEEE Data Computer Conference, pp. 212–221 (1995)

  14. Said A., Pearlman W.A.: A new fast and efficient image codec based on set partitioning in hierarchical trees. Proc. IEEE Trans. Circuits Syst. Video Technol. 6(3), 243–250 (1996)

    Article  Google Scholar 

  15. Pearlman W.A., Islam A., Nagaraj N., Said A.: Efficient low-complexity image coding with a set-partitioning embedded block coder. Proc. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004)

    Article  Google Scholar 

  16. Taubman D.: High performance scalable image compression with EBCOT. Proc. IEEE Trans. Image Process. 9(7), 1159–1170 (2000)

    Google Scholar 

  17. Pan H., Siu W.C., Law N.F.: Lossless image compression employing binary wavelet transforms. Proc. IET Image Process. 1(4), 353–362 (2007)

    Article  Google Scholar 

  18. Swanson M.D., Tewfik A.H.: A binary wavelet decomposition of binary images. Proc. IEEE Trans. Image Process. 5, 1637–1650 (1996)

    Article  Google Scholar 

  19. Kamstra, L.: The design of linear binary wavelet transforms and their application to binary image compression. In: Proceedings of IEEE International Conference Image Processing, ICIP’03, pp. 241–244 (2003)

  20. Kamstra, L.: Nonlinear binary wavelet transforms and their application to binary image compression. In: Proceedings of 2003 IEEE International Conference Image Processing, pp. 593–596 (2002)

  21. Gerek, Ö.N., Çetin, A.E., Tewfik, A.H.: Subband coding of binary textual images for document retrieval. In: Proceedings of IEEE International Conference Image Processing, ICIP ’96, pp. 899–902 (1996)

  22. Pan H., Jin L.Z., Yuan X.H., Xia X.Y., Xia L.Z.: Context based embedded image compression using binary wavelet transform. Proc. J. Image Vis. Comput. 28, 991–1002 (2010)

    Article  Google Scholar 

  23. Law N.F., Siu W.C.: A filter design strategy for binary field wavelet transform using the perpendicular constraint. Proc. J. Signal Process. 87(11), 2850–2858 (2007)

    Article  MATH  Google Scholar 

  24. Sweldens W.: The lifting scheme: a construction of second generation wavelets. Proc. SIAM J. Math. Anal. 29(2), 511–546 (1997)

    Article  MathSciNet  Google Scholar 

  25. Adams M.D., Kossentini F.: Reversible integer-to-integer wavelet transform for image compression: performance evaluation and analysis. Proc. IEEE Trans. Image Process. 8(6), 1010–1024 (2000)

    Article  MathSciNet  Google Scholar 

  26. Antonini M., Barlaud M., Mathieu P., Daubechies I.: Image coding using wavelet transforms. Proc. IEEE Trans. Image Process. 1, 205–220 (1992)

    Article  Google Scholar 

  27. Kanumuri T., Dewal M.L., Anand R.S.: Lossy to lossless medical image coding using joint bit scanning method. Proc. Comput. Eng. Intell. Syst. 2(4), 101–109 (2011)

    Google Scholar 

  28. Murala, S, Maheshwari, R.P., Balasubramanian, R.: Directional binary wavelet patterns for biomedical image indexing and retrieval. Proc. J. Med. Syst. doi:10.1007/s10916-011-9764-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tirupathiraju Kanumuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanumuri, T., Dewal, M.L. & Anand, R.S. Progressive medical image coding using binary wavelet transforms. SIViP 8, 883–899 (2014). https://doi.org/10.1007/s11760-012-0325-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0325-1

Keywords

Navigation