Skip to main content
Log in

Image denoising by supervised adaptive fusion of decomposed images restored using wave atom, curvelet and wavelet transform

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents an efficient image denoising method that adaptively combines the features of wavelets, wave atoms and curvelets. Wavelet shrinkage is used to denoise the smooth regions in the image while wave atoms are employed to denoise the textures, and the edges will take advantage of curvelet denoising. The received noisy image is firstly decomposed into a homogenous (smooth/cartoon) part and a textural part. The cartoon part of the noisy image is denoised using wavelet transform, and the texture part of the noisy image is denoised using wave atoms. The two denoised images are then fused adaptively. For adaptive fusion, different weights are chosen from the variance map of the denoised texture image. Further improvement in denoising results is achieved by denoising the edges through curvelet transform. The information about edge location is gathered from the variance map of denoised cartoon image. The denoised image results in perfect presentation of the smooth regions and efficient preservation of textures and edges in the image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gonzalez R.C., Woods R.E.: Digital Image Processing. 2nd edn. Pearson Education, Singapore (2002)

    Google Scholar 

  2. Starck J.L., Candes E.J., Donoho D.L.: The curvelet transform for image denoising. In: IEEE Trans. Image Process. 11(6), 670–684 (2002)

    MathSciNet  Google Scholar 

  3. Donoho D.: Wedgelets: nearly minimax estimation of edges. Ann. Stat. 27(3), 859–897 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Le Pennec E., Mallat S.: Sparse geometrical image approximation with bandlets. In: IEEE Trans. Image Process. 14(4), 423–438 (2005)

    MathSciNet  Google Scholar 

  5. Demanet L., Ying L.: Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmon. Anal. 23(3), 368–387 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Swami, P.D., Jain, A., Singhai, J.: A multilevel Shrinkage approach for curvelet denoising. In: Proceeding of International Conference on Information and Multimedia Technology, pp. 268–272, Jeju Island, Korea (Dec. 16–18, 2009)

  7. Pizurica A., Philips W.: Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising. In: IEEE Trans. Image Process. 15(3), 654–665 (2006)

    Google Scholar 

  8. Chang S.G., Yu B., Vetterli M.: Spatially adaptive wavelet thresholding with context modeling for image denoising. In: IEEE Trans. Image Process. 9(9), 1522–1531 (2000)

    MATH  MathSciNet  Google Scholar 

  9. Tessens L., Pizurica A., Alecu A., Munteanu A., Philip W.: Context adaptive image denoising through modeling of curvelet domain statistics. J. Electron. Imaging 17(3), 033021-1–033021-17 (2008)

    Article  Google Scholar 

  10. Liu J., Moulin P.: Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients. In: IEEE Trans. Image Process. 10(11), 1647–1658 (2001)

    MATH  MathSciNet  Google Scholar 

  11. Nasri M., Pour H.N.: Image denoising in the wavelet domain using a new adaptive thresholding function. Elsevier J. Neurocomput. 72, 1012–1025 (2009)

    Article  Google Scholar 

  12. Bhutada G.G., Anand R.S, Saxena S.C.: PSO-based learning of sub-band adaptive thresholding function for image denoising. Signal Image Video Process. 6(1), 1–7 (2012)

    Google Scholar 

  13. Elad M., Aharon M.: Image denoising via sparse and redundant representations over learned dictionaries. In: IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    MathSciNet  Google Scholar 

  14. Elad M., Figueiredo M.A.T., Ma Y.: On the role of sparse and redundant representation in image processing. In: IEEE Proc. Special Issue Appl. Sparse Represent. Compress. Sens. 98(6), 972–982 (2010)

    Google Scholar 

  15. Po D.D.Y., Do M.N.: Directional multiscale modeling of images using the contourlet transform. In: IEEE Trans. Image Process. 15(6), 1610–1620 (2006)

    MathSciNet  Google Scholar 

  16. Liu, W., Shui, P., Cheng, Y.: Residue-based fusion of denoised images by different filter banks. In: Proceeding of Industrial Electronics and Applications, 2009, pp. 2420–2423

  17. Miller M., Kingsbury N.: Image denoising using derotated complex wavelet coefficients. In: IEEE Trans. Image Process. 17(9), 1500–1511 (2008)

    MathSciNet  Google Scholar 

  18. Durand S., Froment J.: Reconstruction of wavelet coefficients using total variation minimization. SIAM J. Sci. Comput. 24, 1754–1767 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ma J., Plonka G.: Computing with curvelets: from image processing to turbulent flows. In: IEEE J. Comput. Sci. Eng. 11(2), 72–80 (2009)

    Google Scholar 

  20. Plonka G., Ma J.: Nonlinear regularized reaction-diffusion filters for denoising of images with textures. In: IEEE Trans. Image Process. 17(8), 1283–1293 (2008)

    MathSciNet  Google Scholar 

  21. Starck J.L., Donoho D.L., Candes E.: Very high quality image restoration by combining wavelets and curvelets. Proc. SPIE Conf. Signal Image Process. Wavelets: Appl. Signal Image Process. IX 4478, 9–19 (2001)

    Google Scholar 

  22. Weibin, Z., Wenjuan, Z.: A variational model combining curvelet Shrinkage and nonlinear anisotropic diffusion for image denoising. In: Proceeding of IEEE Information Assurance and Security, pp. 497–500, (Aug. 18–20, 2009)

  23. Li, H., Wang, S., Deng, C.: New image denoising method based wavelet and curvelet transform. In: Proceeding of IEEE Conference ICIE, WASE vol. 1, pp. 136–139 (July 10–11, 2009)

  24. Bhutada G.G., Anand R.S., Saxena S.C.: Edge preserved image enhancement using adaptive fusion of images denoised by wavelet and curvelet transform. Digit. Signal Process. 21, 118–129 (2011)

    Article  Google Scholar 

  25. Swami P.D., Jain A.: Segmentation based combined wavelet-curvelet approach for image denoising. Int. J. Inf. Eng. 2(1), 32–37 (2012)

    Google Scholar 

  26. Vese L.A., Osher S.J.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vis. 20, 7–18 (2004)

    Article  MathSciNet  Google Scholar 

  27. Mumford D., Shah J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Starck J.L., Elad M., Donoho D.L.: Image decomposition via the combination of sparse representation and a variational approach. In: IEEE Trans. Image Process. 14(10), 1570–1582 (2005)

    MathSciNet  Google Scholar 

  29. Buades A., Le T.M., Morel J.M., Vese L.: Fast cartoon+texture image filters. In: IEEE Trans. Image Process. 19(8), 1978–1986 (2010)

    MathSciNet  Google Scholar 

  30. Shen, J.: Piecewise H −1 + H 0 + H 1 images and the Mumford–Shah–Sobolev model for segmented image decomposition. Appl. Math. Res. Exp. (4), 143–167 (2005)

  31. http://www.curvelet.org

  32. http://www.waveatom.org

  33. Pratt W.K.: Digital Image Processing. 3rd edn. Wiley, New York (2006)

    Google Scholar 

  34. Wang Z., Bovik A.C.: Universal image quality index. In: IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Google Scholar 

  35. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P.: Image quality assessment from error visibility to structural similarity. In: IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preety D. Swami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swami, P.D., Jain, A. Image denoising by supervised adaptive fusion of decomposed images restored using wave atom, curvelet and wavelet transform. SIViP 8, 443–459 (2014). https://doi.org/10.1007/s11760-012-0343-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0343-z

Keywords

Navigation