Skip to main content
Log in

The magic of split augmented Lagrangians applied to K-frame-based l 0l 2 minimization image restoration

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

We propose a simple, yet efficient image deconvolution approach, which is formulated as a complementary K-frame-based l 0l 2 minimization problem, aiming at benefiting from the advantages of each frame. The problem is solved by borrowing the idea of alternating split augmented Lagrangians. The experimental results demonstrate that our approach has achieved competitive performance among state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang Y., Yang J., Yin W., Zhang Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(4), 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beck A., Teboulle M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. In: IEEE Trans. Image Process. 18(11), 2419–2434 (2009)

    MathSciNet  Google Scholar 

  3. Chantas A.G., Galatsanos N.P., Molina R., Katsaggelos A.K.: Variational Bayesian image restoration with a product of spatially weighted total variation image priors. In: IEEE Trans. Image Process. 19(2), 351–362 (2010)

    MathSciNet  Google Scholar 

  4. Levin A., Fergus R., Durand F., Freeman W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 6(3), 701–709 (2007)

    Google Scholar 

  5. Banham M.R., Katsaggelos A.K.: Spatially adaptive wavelet-based multiscale image restoration. In: IEEE Trans. Image Process. 5(4), 619–634 (1996)

    Google Scholar 

  6. Figueiredo M.A.T., Nowak R.D.: An EM algorithm for wavelet-based image restoration. In: IEEE Trans. Image Process. 12(8), 906–916 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Neelamani R., Choi H., Baraniuk R.: ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. In: IEEE Trans. Signal Process. 52(2), 418–433 (2004)

    MathSciNet  Google Scholar 

  8. Bioucas-Dias J.: Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors. In: IEEE Trans. Image Process. 15(4), 937–951 (2006)

    MathSciNet  Google Scholar 

  9. Afonso M., Bioucas-Dias J., Figueiredo M.: Fast image recovery using variable splitting and constrained optimization. In: IEEE Trans. Image Process. 19(19), 2345–2356 (2010)

    MathSciNet  Google Scholar 

  10. Chai A., Shen Z.: Deconvolution: a wavelet frame approach. Numerische Mathematik 106(4), 529–587 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bioucas-Dias, J., Figueiredo, M.: An iterative algorithm for linear inverse problems with compound regularizers. In: Proceedings of IEEE International Conference on Image Processing (ICIP’08), San Diego, USA, pp. 685-688 (2008)

  12. Starck J.-L., Nguyen M., Murtagh F.: Wavelets and curvelets for image deconvolution: a combined approach. Signal Process. 83(10), 2279–2283 (2003)

    Article  MATH  Google Scholar 

  13. Wen Y., Ng M., Ching W.: Iterative algorithms based on the decouple of deblurring and denoising for image restoration. SIAM J. Sci. Comput. 30(5), 2655–2674 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mignotte M.: Fusion of regularization terms for image restoration. J. Electron. Imaging 19, 033004 (2010)

    Article  MathSciNet  Google Scholar 

  15. Guerrero-Colon, J.A., Portilla, J.: Deblurring-by-denoising using spatially adaptive gaussian scale mixtures in over-complete pyramids. In: Proceedings of IEEE International Conference on Image Processing, Atlanta, USA, vol. 1, pp. 625–628, Oct 2006

  16. Chantas G., Galatsanos N., Likas A.: Bayesian restoration using a new nonstationary edge-preserving image prior. In: IEEE Trans. Image Process. 15(10), 2987–2997 (2006)

    MathSciNet  Google Scholar 

  17. Starck J.-L., Elad M., Donoho D.: Image decomposition via the combination of sparse representations and a variational approach. In: IEEE Trans. Image Process. 14(10), 1570–1582 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Candès E.J., Eldar Y.C., Needell D., Randall P.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31(1), 59–73 (2010)

    Article  Google Scholar 

  19. Starck J.-L., Fadili J., Murtagh F.: The undecimated wavelet decomposition and its reconstruction. In: IEEE Trans. Image Process. 16(2), 297–309 (2007)

    MathSciNet  Google Scholar 

  20. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. In: IEEE Signal Process. Mag. 22(6), 123–151 (2005)

  21. Peyrè G.: A review of adaptive image representations. In: IEEE J. Sel. Top. Signal Process. 5(5), 896–911 (2011)

    Google Scholar 

  22. Patel V.M., Easley G.R., Healy D.M.: Shearlet-based deconvolution. In: IEEE Trans. Image Process. 18(12), 2673–2685 (2009)

    MathSciNet  Google Scholar 

  23. Cai J.F., Shen Z.: Framelet based deconvolution. J. Comput. Math. 28(3), 289–308 (2010)

    MATH  MathSciNet  Google Scholar 

  24. Blumensath T., Davies M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Oliveira J., Bioucas-Dias J., Figueiredo M.: Adaptive total variation image deblurring: a majorization-minimization approach. Signal Process. 89(9), 1683–1693 (2009)

    Article  MATH  Google Scholar 

  26. Mignotte M.: A non-local regularization strategy for image deconvolution. Pattern Recognit. Lett. 29(16), 2206–2221 (2008)

    Article  Google Scholar 

  27. Figueiredo, M., Nowak, R.: A bound optimization approach to wavelet-based image deconvolution. In: Proceedings of IEEE International Conference on Image Processing (ICIP’05), Genova, Italy, vol. 2, pp. 782–785, Sept 2005

  28. Miller M., Kingsbury N.G.: Image modeling using interscale phase properties of complex wavelet coefficients. In: IEEE Trans. Image Process. 17(9), 1491–1499 (2008)

    MathSciNet  Google Scholar 

  29. Starck J.-L., Elad M., Donoho D.L.: Redundant multiscale transforms and their application for morphological component analysis. J. Adv. Imaging Electron Phys. 132, 287–348 (2004)

    Article  Google Scholar 

  30. Mairal J., Sapiro G., Elad M.: Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model. Simul. 7(1), 214–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ze Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, WZ., Deng, HS. & Wei, ZH. The magic of split augmented Lagrangians applied to K-frame-based l 0l 2 minimization image restoration. SIViP 8, 975–983 (2014). https://doi.org/10.1007/s11760-012-0370-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0370-9

Keywords

Navigation