Skip to main content
Log in

Automated segmentation of stromal tissue in histology images using a voting Bayesian model

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Over the past two decades, digital histology has been clinically approved for the various cancer diagnosis and prognosis tasks including proliferation rate estimation (PRE). Histology images contain two types of regions: epithelial and stromal. PRE is clinically restricted to epithelial tissue because stromal cells do not become cancerous. PRE has very high inter- and intra-pathologist variability and especially among juniors. The major cause of this variability is the stromal area. In this paper, we digitally segment out all stromal areas and present the pathologist with only epithelial areas for PRE. This reduces inter- and intra-pathologist variability. To that end, we propose a Bayesian voting-based model for removal of stromal cells utilizing cells texture and color. Our results on fifty clinical images show that pathologists’ PRE become more accurate and reproducible. Furthermore, PRE of expert pathologists shows very high inter-observer reliability after our fully automated segmentation. We validate our proposed model by testing three aspects and we find: (i) the effect of our segmentation on the clinical decision is the same before and after our segmentation. (ii) the segmentation similarity dice measure is 86.78 % which is a high similarity level. (iii) the time reduction of the pathologist is, on average, over 39 % which also supports the clinical benefit of our proposed work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agoston, M.K.: Computer Graphics and Geometric Modeling: Implementation and Algorithms, pp. 300–306. Springer, London (2005)

    Google Scholar 

  2. Alomari, R., Allen, R., Sabata, B., Chaudhary, V.: Localization of tissues in high resolution digital anatomic pathology images. In: Proceedings of the SPIE Medical Imaging, vol. 7260, pp. 1–12. Lake Buena Vista, FL, USA (2009)

  3. Babalola, K., Patenaude, B., Aljabar, P., Schnabel, J., Kennedy, D., Crum, W., Smith, S., Cootes, T., Jenkinson, M., Rueckert, D.: Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI. In: Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention—Part I, MICCAI ’08, pp. 409–416. Springer, Berlin (2008). doi:10.1007/978-3-540-85988-8_49

  4. Basavanhally, A., Ganesan, S., Agner, S., Monaco, J., Feldman, M., Tomaszewski, J., Bhanot, G., Madabhushi, A.: Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology. IEEE Trans. Biomed. Eng. 57(3), 642–653 (2010). doi:10.1109/TBME.2009.2035305

    Article  Google Scholar 

  5. Beresford, M., Wilson, G., Makris, A.: Measuring proliferation in breast cancer: practicalities and applications. Breast Cancer Res. 8(6), 216 (2006). doi:10.1186/bcr1618

    Article  Google Scholar 

  6. Center for Bio-Image Informatics: automatic nuclei counter plug-in for imagej. http://www.bioimage.ucsb.edu/. Accessed 9 July 2012

  7. Dice, L.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  8. Doyle, S., Agner, S., Madabhushi, A., Feldman, M., Tomaszeweski, J.: Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), pp. 496–499. IEEE, Paris, France (2008)

  9. Essafi, S., Doughri, R., Mhiri, S., Romdhane, K., Ghorbel, F.: Segmentation and classification of breast cancer cells in histological images. In: Proceedings of Information and Communication Technologies (ICTTA’06), pp. 1097–1102 (2006)

  10. Fang, B., Hsu, W., Lee, M.: On the accurate counting of tumor cells. IEEE Trans. Nano Biosci. 2(2), 94–103 (2003)

    Article  Google Scholar 

  11. Francis, I., Adeyanju, M., George, S., Junaid, T., Luthra, U.: Manual versus image analysis estimation of PCNA in breast carcinoma. Anal. Quant. Cytol. Histol. 22(1), 11–16 (2000)

    Google Scholar 

  12. Goffredo, M., Schmid, M., Conforto, S., Amorosi, B., D’Alessio, T., Palma, C.: Quantitative color analysis for capillaroscopy image segmentation. Med. Biol. Eng. Comput. 50(6) (2012)

  13. Goffredo, M., Schmid, M., Conforto, S., Carli, M., Neri, A., D’Alessio, T.: Markerless human motion analysis in gauss-laguerre transform domain: an application to sit-to-stand in young and elderly people. IEEE Trans. Inf. Technol. Biomed. 13(2), 207–216 (2009)

    Article  Google Scholar 

  14. Jeffrey, S., Tlsty, T.: Breast stromal genes act as early markers of malignancy (2002). Grant 8EB 0106

  15. Jemal, A., Bray, F., Center, M., Ferlay, J., Ward, E., Forman, D.: Global cancer statistics. CA: A Cancer J. Clin. 61(2), 69–90 (2011)

    Article  Google Scholar 

  16. Klauber-DeMore, N., Zee, K.V., Linkov, I., Borgen, P., Gerald, W.: Biological behavior of human breast cancer micrometastases. Clin. Cancer Res. 7(8), 2434–2439 (2001)

    Google Scholar 

  17. Kumar, S., Moni, R., Rajeesh, J.: Automatic liver and lesion segmentation: a primary step in diagnosis of liver diseases. Signal Image Video Process. 1–10 (2011). doi:10.1007/s11760-011-0223-y

  18. López, C., Lejeune, M., Escrivà, P., Bosch, R., Salvadó, M., Pons, L., Baucells, J., Cugat, X., Alvaro, T., Jaén, J.: Effects of image compression on automatic count of immunohistochemically stained nuclei in digital images. J. Am. Med. Inform. Assoc. 15(6), 794–798 (2008)

    Article  Google Scholar 

  19. Loukas, C., Wilson, G., Vojnovic, B., Linney, A.: An image analysis-based approach for automated counting of cancer cell nuclei in tissue. Cytometry 55A(1), 30–42 (2003)

    Article  Google Scholar 

  20. Pan, L., Prince, J., Lima, J., Osman, N.: Fast tracking of cardiac motion using 3D-HARP. IEEE Trans. Biomed. Eng. 52(8), 1425–1435 (2005)

    Article  Google Scholar 

  21. Phukpattaranont, P., Limsiroratana, S., Boonyaphiphat, P.: Computer-aided system for microscopicimages: application to breast cancer nucleicounting. Int. J. Appl. Biomed. Eng. 2(1), 69–74 (2009)

    Google Scholar 

  22. Primkhajeepong, C., Phukpattaranont, P., Limsiroratana, S., Boonyaphiphat, P., Kayasut, K.: Performance evaluation of automated algorithm for breast cancer cell counting. Int. J. Comput. Electr. Eng. 2(4), 637–642 (2010)

    Article  Google Scholar 

  23. Torp, S.: Proliferative activity in human glioblastomas: evaluation of different Ki67 equivalent antibodies. Mol. Pathol. 50(4), 198–200 (1997)

    Article  Google Scholar 

  24. Urruticoechea, A., Smith, I., Dowsett, M.: Proliferation marker Ki-67 in early breast cancer. J. Clin. Oncol. 23(28), 7212–7220 (2005). doi:10.1200/JCO.2005.07.501

    Google Scholar 

  25. van Diest, P., van der Wall, E., Baak, J.: Prognostic value of proliferation in invasive breast cancer: a review. J. Clin. Pathol. 57(7), 675–681 (2004). doi:10.1136/jcp. 2003.010777

    Article  Google Scholar 

  26. Veronese, S., Gambacorta, M.: Detection of Ki-67 proliferation rate in breast cancer. Correlation with clinical and pathologic features. Am. J. Clin. Pathol. 95, 30–34 (1991)

    Google Scholar 

  27. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics. Springer, Berlin (2004)

  28. William, H., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

  29. Xu, T., Gondra, I.: A simple and effective texture characterization for image segmentation. Signal Image Video Process. 6(2), 231–245 (2012). doi:10.1007/s11760-010-0182-8

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by grants from NSF MRI-R2, NSF CRI, and UB CAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja S. Alomari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiary, H., Alomari, R.S., Saadah, M. et al. Automated segmentation of stromal tissue in histology images using a voting Bayesian model. SIViP 7, 1229–1237 (2013). https://doi.org/10.1007/s11760-012-0393-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0393-2

Keywords

Navigation