Skip to main content
Log in

Novel peer group filtering method based on the CIELab color space for impulse noise reduction

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel peer group filtering method for impulsive noise reduction. The main contributions of the proposed method are twofold. First, noise detection is performed in the CIELab, instead of the RGB, color space to enhance the noise detection effect. Secondly, two different-sized windows are used to determine the peer group for deducing more accurate status of each pixel, alleviating the problem of deducing non-corrupted pixels as corrupted in the neighborhood of edges in the textural regions. Based on five typical test color images, experimental results demonstrate that the proposed method achieves better performance in noise detection and hence noise reduction when compared to five existing competitive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78, 678–689 (1990)

    Article  Google Scholar 

  2. Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Berlin (2000)

    Book  Google Scholar 

  3. Lukac, R., Smolka, B., Martin, K., Plataniotis, K.N., Venetsanopoulos, A.N.: Vector filtering for color imaging. IEEE Signal Process. Mag. 22, 74–86 (2005)

    Article  Google Scholar 

  4. Own, C.M., Tsai, H.H., Yu, P.T., Lee, Y.J.: Adaptive type-2 fuzzy median filter design for removal of impulse noise. Imag. Sci. J. 54(1), 3–18 (2006)

    Article  Google Scholar 

  5. Schulte, S., Witte, V.D., Nachtegael, M., Weken, D.V., Kerre, E.E.: Fuzzy random impulse noise reduction method. Fuzzy Sets Syst. 158, 270–283 (2007)

    Article  Google Scholar 

  6. Schulte, S., Witte, V.D., Nachtegael, M., Weken, D.V., Kerre, E.E.: Histogram-based fuzzy colour filter for image restoration. Image Vis. Comput. 25, 1377–1390 (2007)

    Article  Google Scholar 

  7. Schulte, S., Morillas, S., Gregori, V., Kerre, E.E.: A new fuzzy color correlated impulsive noise reduction method. IEEE Trans. Image Process. 16, 2565–2575 (2007)

    Article  MathSciNet  Google Scholar 

  8. Morillas, S., Gregori, V., Peris-Fajarnes, G., Sapena, A.: New adaptive vector filter using fuzzy metrics. J. Electron. Imaging 16, 033007 (2007)

    Article  Google Scholar 

  9. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognit. Lett. 31, 1842–1849 (2010)

    Article  Google Scholar 

  10. Bigand, A., Colot, O.: Fuzzy filter based on interval-valued fuzzy sets for image filtering. Fuzzy Sets Syst. 161(1), 96–117 (2010)

    Article  MathSciNet  Google Scholar 

  11. Jin, L., Li, D.: An efficient color impulse detector and its application to color images. IEEE Signal Process. Lett. 14, 397–400 (2007)

    Article  MathSciNet  Google Scholar 

  12. Srinivasan, K.S., Ebenezer, D.: A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Process. Lett. 14, 189–192 (2007)

    Article  Google Scholar 

  13. Dong, Y., Xu, S.: A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Process. Lett. 14, 193–196 (2007)

    Article  Google Scholar 

  14. Jin, L., Li, D.: A switching vector median filter based on the CIELAB color space for color image restoration. Signal Process. 87, 1345–1354 (2007)

    Article  MATH  Google Scholar 

  15. Moxey, C.E., Sangwine, S.T., Ell, T.A.: Hypercomplex correlation techniques for vector images. IEEE Trans. Signal Process. 51, 1941–1953 (2003)

    Article  MathSciNet  Google Scholar 

  16. Eng, H., Ma, K.: Noise adaptive soft-switching median filter. IEEE Trans. Image Process. 10, 242–251 (2001)

    Article  MATH  Google Scholar 

  17. Hwang, H., Haddad, R.: Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4, 499–502 (1995)

    Article  Google Scholar 

  18. Bar, L., Brook, A., Schen, N., Kiryati, N.: Deblurring of color images corrupted by salt-and-pepper noise. IEEE Trans. Image Process. 16, 1101–1111 (2007)

    Article  MathSciNet  Google Scholar 

  19. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20, 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  20. Chan, R., Hu, C., Nikolova, M.: An iterative procedure for removing random-valued impulse noise. IEEE Signal Process. Lett. 11, 921–924 (2004)

    Article  Google Scholar 

  21. Chan, R., Ho, C., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detector and edge-preserving regularization 2005. IEEE Trans. Image Process. 14, 1479–1485 (2005)

    Article  Google Scholar 

  22. Huang, Y.M., Ng, M.K., Wen, Y.W.: Fast image restoration methods for impulse and Gaussian noises removal. IEEE Signal Process. Lett. 16(6), 457–460 (2009)

    Google Scholar 

  23. Neuvo, Y., Ku, W.: Analysis and digital realization of a pseudorandom Gaussian and impulsive noise source. IEEE Trans. Commun. 23, 849–858 (1975)

    Article  Google Scholar 

  24. Ho, J.Y.F.: Peer region determination based impulsive noise detection. Proc. Int. Conf. Acoust. Speech Signal Process. 3, 713–716 (2003)

  25. Smolka, B., Chydzinski, A.: Fast detection and impulsive noise removal in color images. Real Time Imaging 11, 389–402 (2005)

    Google Scholar 

  26. Morillas, S., Gregori, V., Peris-Fajarnes, G.: Isolating impulsive noise pixels in color images by peer group techniques. Comput. Vis. Image Underst. 110, 102–116 (2008)

    Article  Google Scholar 

  27. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Fast detection and removal of impulsive noise using peer groups and fuzzy metrics. J. Vis. Commun. Image Represent. 19, 20–29 (2008)

    Article  Google Scholar 

  28. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Some improvements for image filtering using peer group techniques. Image Vis. Comput. 28, 188–201 (2010)

    Article  Google Scholar 

  29. Morillas, S., Gregori, V., Peris-Fajarnes, G., Latorre, P.: A fast impulsive noise color image filter using fuzzy metrics. Real Time Imaging 11, 417–428 (2005)

    Article  Google Scholar 

  30. Berns, Roy S.: Billmeyer and Saltzman’s Principles of Color Technology, 3rd edn. Wiley, New York (2000)

    Google Scholar 

  31. Hunt, R.W.G.: The Reproduction of Colour, 6th edn. Wiley, England (2006)

    Google Scholar 

  32. Koga, T., Suetake, N.: Random-valued impulse noise reduction by MST-based method for color image. Proceedings of International MultiConference of Engineers and Computer Scientists, vol. I (2011)

  33. KODAK Test Images Database. (Online) http://r0k.us/graphics/kodak/

  34. The proposed open-source code. (Online) ftp://140.118.175.164/Denoise/Denoise5.0.zip

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Liang Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, KL., Yang, WN., Lai, YR. et al. Novel peer group filtering method based on the CIELab color space for impulse noise reduction. SIViP 8, 1691–1713 (2014). https://doi.org/10.1007/s11760-012-0403-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0403-4

Keywords

Navigation