Skip to main content

Advertisement

Log in

Automatic cephalometric landmark detection using Zernike moments and template matching

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Cephalometry is an essential clinical and research tool in orthodontics. It has been used for decades to obtain absolute and relative measures of the craniofacial skeleton. Since manual identification of predefined anatomical landmarks is a very tedious approach, there is a strong need for automated methods. This paper explores the use of Zernike moment-based global features for initial landmark estimation and computing small expectation window for each landmark. Using this expectation window and local template matching based on ring and central projection method, a closer approximation of landmark position is obtained. A smaller search window based on this approximation is used to find the exact location of landmark positions based on template matching using a combination of sum of squared distance and normalized cross-correlation. The system was tested on 18 commonly used landmarks using a dataset of 85 randomly selected cephalograms. A total of 89.5 % of the localization of 18 selected landmarks are within a window of \(\le \!\!\pm 2\text{ mm}\). The average mean error for the 18 landmarks is 1.84 mm and average SD of mean error is 1.24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Levy-Mandel, A.D., Venetsanopoulos, A.N., Tsotsos, J.K.: Knowledge-based landmarking of cephalograms. J. Comput. Biomed. Res. 19, 282–309 (1986)

    Article  Google Scholar 

  2. Parthasarathy, S., Nugent, S.T., Gregson, P.G., Fay, D.F.: Automatic landmarking of cephalograms. J. Comput. Biomed. Res. 22, 248–269 (1989)

    Article  Google Scholar 

  3. Tong, W., Nugent, S.T., Jensen, G.M., Fay, D.F.: An algorithm for locating landmarks on dental X-rays. In: Proceedings of 11th IEEE Annual International Conference of Engineering in Med. and Bio Soc. 1989, Nov 9–12, Seattle, Washington, USA, vol. 2, pp. 552–554 (1990)

  4. Forsyth, D.B., Davis, D.N.: Assessment of an automated cephalometric analysis system. Eur. J. Orthod. 18, 471–478 (1996)

    Article  Google Scholar 

  5. Romaniuk, B., Desvignes, M., Clouard, R., Demoment, R., Revenu, M., Deshayes, M.J.: First step towards automatic location of landmarks on X-ray images. In: Proceedings of the International Conference of Pattern Recognition (ICPR 2000), 2000 Sept 3–8, pp. 2275–2278, Barcelona, Spain (2000)

  6. Cardillo, J., Sid-Ahmed, M.A.: An image processing system for locating craniofacial landmarks. IEEE Trans. Med. Imaging 13, 275–289 (1994)

    Article  Google Scholar 

  7. Rudolph, D.J., Sinclair, P.M., Coggins, J.M.: Automatic computerized radiographic identification of cephalometric landmarks. Am. J. Orthod. Dentofac. Orthop. 113, 73–179 (1998)

    Google Scholar 

  8. Liu, J., Chen, Y., Cheng, K.: Accuracy of computerized automatic identification of cephalometric landmarks. Am. J. Orthod. Dentofac. Orthop. 118, 535–540 (2000)

    Article  Google Scholar 

  9. Hutton, T.J., Cunningham, S., Hammond, P.: An evaluation of active shape models for the automatic identification of cephalometric landmarks. Eur. J. Orthod. 22, 499–508 (2000)

    Article  Google Scholar 

  10. Saad, A.A., El-Bialy, A., Kandil, A.H., Sayed, A.A.: Automatic cephalometric analysis using active appearance model and simulated annealing. In: Proceedings of the International Conference on Graphics, Vis and Imag Proc (GVIP05), vol. 51–67, 2005 Dec 9–21, Cairo, Egypt (2005)

  11. Rueda, S., Alcaniz, M.: An approach for the automatic cephalometric landmark detection using mathematical morphology and active appearance models. In: Proceedings of the Med. Image Comput. Assisted Intervention (MICCAI 2006) 2006 Oct 1–6, Copenhagen, Denmark, vol. 4190, pp. 159–166 (2006)

  12. Vucinic, P., Trpovski, Z., Scepan, I.: Automatic landmarking of cephalograms using active appearance models. Eur. J Orthodont. 32(3), 233–241 (2010)

    Article  Google Scholar 

  13. Grau, V., Alcaniz, M., Juan, M.C., Monserrat, C., Knoll, C.: Automatic localization of cephalometric landmarks. J. Biomed. Inform. 34, 146–156 (2001)

    Article  Google Scholar 

  14. Feghi, E., Sid-Ahmed, M.A., Ahmadi, M.: Automatic localization of craniofacial landmarks for assisted cephalometry. Pattern Recognit. 37(3), 609–621 (2004)

    Article  Google Scholar 

  15. Chakrabartty, S., Yagi, M., Shibata, T., Cauwenberghs, G.: Robust cephalometric identification using support vector machines. In: ICME2003: Proc of Int Conf on Multimedia and Expo. 2003 July 6–9; Baltimore, Maryland: IEEE, pp. 429–432 (2003)

  16. Ciesielski, V., Innes, A., Sabu, J., Mamutil, J.: Genetic programming for landmark detection in cephalometric radiology images. Int. J. Knowl. Based Intell. Eng. Syst. 7, 164–171 (2003)

    Google Scholar 

  17. Leonardi, R., Giordano, D., Maiorana, F.: An evaluation of cellular neural networks for the automatic identification of cephalometric landmarks on digital images. Hindawi Publishing Corporation J of Biomed and Biotech. Article ID 717102, 12 p (2009)

    Google Scholar 

  18. Yue, W., Yin, D., Li, C., Wang, G., Xu, T.: Automated 2-D cephalometric analysis on x-ray images by a model-based approach. IEEE Trans. Biomed. Eng. 53, 1615–1623 (2006)

    Google Scholar 

  19. Kafieh, R., Mehri, A., Sadri, S.: Automatic landmark detection in cephalometry using a modified active shape model with sub image matching. In: ICMV2007, Inter conf of Mach Vis, 2007, 28–29 Dec, Islamabad, Pakistan, IEEE, pp. 73–8 (2007)

  20. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. (1917–1983) 70, 920–30 (1980)

  21. Singh, C., Walia, E.: Fast and numerically stable methods for the computation of Zernike moments. Pattern Recognit. 43(7), 2497–2506 (2010)

    Article  MATH  Google Scholar 

  22. Akca, D.: Generalized Procrustes Analysis and Its Applications in Photogrammetry. Zurich, Switzerland, 1 July 2003, Internal Colloquium at Photogrammetry and Remote Sensing Group of IGP—ETH Zurich (2003)

  23. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, New York (1998)

    MATH  Google Scholar 

  24. Crimmins, T.: A complete set of Fourier descriptors descriptor for two dimensional shapes. IEEE Trans. Syst. Man Cybern. 12, 170–179 (1982)

    Article  MathSciNet  Google Scholar 

  25. Tang, Y.Y., Cheng, H.D., Suen, C.Y.: Transformation-ring-projection algorithm and its VLSI implementation. Int. J. Pattern Recognit. Artif. Intell. 5(1–2), 25–56 (1991)

    Article  Google Scholar 

  26. Tao, Y., Ernest, C.M.L., Huang, C.S., Tang, Y.Y.: Information distribution of the projection method for Chinese character recognition. J. Inf. Sci. Eng. 16, 127–139 (2000)

    Google Scholar 

  27. Choi, M.S., Kim, W.Y.: A novel two stage template matching method for rotation and illumination invariance. Pattern Recognit. 35, 119–129 (2002)

    Article  MATH  Google Scholar 

  28. Lan, R.S., Yang, J.W., Tang, Y.Y.: A composite of central and ring projection. In: ICWAPR2009: Proc of Int Conf on Wavelet Anal and Pattern Reco, 2009 July 12–15, Baoding, IEEE, pp. 200–04 (2005)

  29. Rakosi, T.: An Atlas of Cephalometric Radiography. Wolfe Medical Publications, London (1982)

    Google Scholar 

  30. Athanasios, E.A.: Orthodontic Cephalometry. Mosby– Wolfe, London (1995)

  31. Trpkova, B., Major, P., Prasad, N., Nebbe, B.: Cephalometric landmarks identification and reproducibility: a meta analysis. Am. J. Orthod. Dentofac. Orthop. 112(2), 70–165 (1997)

    Google Scholar 

  32. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB. Prentice Hall, Englewood Cliffs, NJ (2005)

    Google Scholar 

  33. Chien, P.C., Parks, E.T., Eraso, F., Hartsfield, J.K., Roberts, W.E., Ofner, S.: Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three dimensional cone beam computed tomography in vivo. Dentomaxillofac. Rad. 38, 262–273 (2009)

    Article  Google Scholar 

  34. Hamarneh, G.: Active Shape Models, Modeling Shape Variations and Gray Level Information and An Application to Image Search and Classification. The Imaging and Image Analysis Group Department of Signals and Systems. Chalmers University of Technology, Gothenburg, Sweden (1998)

  35. http://www.cs.sfu.ca/~hamarneh/software/asm/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandeep Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, A., Singh, C. Automatic cephalometric landmark detection using Zernike moments and template matching. SIViP 9, 117–132 (2015). https://doi.org/10.1007/s11760-013-0432-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0432-7

Keywords

Navigation