Skip to main content
Log in

Simplification method for textured polygonal meshes based on structural appearance

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper proposes an image-based simplification method for textured triangle meshes that preserves the structural appearance of textured models. Models used in interactive applications are usually composed of textured polygonal meshes. Since textures play an important role in the final appearance of the simplified model, great distortions can be obtained if texture information is not considered in the simplification process. Our method is based on an information channel created between a sphere of viewpoints and the texture regions. This channel enables us to define both the Shannon entropy and the mutual information associated with each viewpoint, and their respective generalizations based on Harvda–Charvát–Tsallis entropy. Several experiments show that great visual distortions are avoided when textured models are simplified using our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luebke, D.P.: A developers survey of polygonal simplification algorithms. IEEE Comput Graph. Appl. 21(3), 24–35 (2001)

    Article  Google Scholar 

  2. Thakur, A., Banerjee, A.G., Gupta, S.K.: A survey of cad model simplification techniques for physics-based simulation applications. Comput. Aided Des. 41(2), 65–80 (2009)

    Article  Google Scholar 

  3. Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 115–122. ACM, New York, USA (1998)

  4. Lindstrom, P., Turk, G.: Image-driven simplification. ACM Trans. Graph. 19(3), 204–241 (2000)

    Article  Google Scholar 

  5. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: SIGGRAPH 01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 409–416. ACM, New York, USA (2001)

  6. Chen, C.C., Chuang, J.H.: Texture adaptation for progressive meshes. Comput. Graph. Forum 25(3), 343–350 (2006)

    Article  MATH  Google Scholar 

  7. García, I., Patow, G.: Igt: inverse geometric textures. ACM Trans. Graph. 27(5), 1–9 (2008)

    Article  Google Scholar 

  8. Cabral, M., Lefebvre, S., Dachsbacher, C., Drettakis, G.: Structure preserving reshape for textured architectural scenes. Comput. Graph. Forum 28(2), 469–480 (2009)

    Article  Google Scholar 

  9. Coll, N., Paradinas, T.: Accurate simplification of multi-chart textured models. Comput. Graph. Forum 29(6), 1842–1853 (2010)

    Article  Google Scholar 

  10. Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (1948)

    Article  Google Scholar 

  11. Tsallis, C.: Possible generalization of boltzmann-gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harvda, J., Charvát, F.: Quantification method of classification processes. Concept of structural alpha-entropy. Kybernetika 3, 30–35 (1967)

    MathSciNet  Google Scholar 

  13. Kho, Y., Garland, M.: User-guided simplification. In: I3D 03: Proceedings of the: Symposium on Interactive 3D graphics, vol. 2003, pp. 123–126. ACM, New York, USA (2003)

  14. González, C., Gumbau, J., Chover, M., Ramos, F., Quirós, R.: User-assisted simplification method for triangle meshes preserving boundaries. Comput. Aided Des. 41(12), 1095–1106 (2009)

    Article  Google Scholar 

  15. Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: VIS 98: Proceedings of the Conference on Visualization 98, pp. 263–269. In: IEEE Computer Society Press, Los Alamitos, USA (1998)

  16. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH 97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216. ACM, New York, USA (1997)

  17. Hoppe, H.: New quadric metric for simplifying meshes with appearance attributes. In: VISUALIZATION 99: Proceedings of the 10th IEEE Visualization: Conference. IEEE Computer Society, Washington, USA, vol. 1999, pp. 59–66 (1999)

  18. Luebke, D.P., Hallen, B.: Perceptually-driven simplification for interactive rendering. In: Proceedings of the 12th Eurographics Workshop on Rendering Techniques, pp. 223–234. Springer, London, UK (2001)

  19. Williams, N., Luebke, D., Cohen, J.D., Kelley, M., Schubert, B.: Perceptually guided simplification of lit, textured meshes. In: I3D 03: Proceedings of the: Symposium on Interactive 3D Graphics, vol. 2003, pp. 113–121. ACM, New York, USA (2003)

  20. Hoppe, H.: Progressive meshes. In: SIGGRAPH 96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108. ACM, New York, USA (1996)

  21. Zhang, E., Turk, G.: Visibility-guided simplification. In: VIS 02: Proceedings of the Conference on Visualization, pp. 267–274. IEEE Computer Society, Washington, USA (2002)

  22. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)

    Article  Google Scholar 

  23. Garland, M., Zhou, Y.: Quadric-based simplification in any dimension. ACM Trans. Graph. 24(2), 209–239 (2005)

    Article  Google Scholar 

  24. Xu, A., Sun, S., Xu, K.: Texture information driven triangle mesh simplification. In: Proceedings of Computer Graphics and Imaging, Honolulu, Hawaii, pp. 43–48 (2005)

  25. González, C., Castelló, P., Chover, M.: A texture-based metric extension for simplification methods. In: 2nd International Conference on Computer Graphics Theory and Applications (GRAPP), pp. 69–76. Barcelona, Spain (2007)

  26. González, C., Castelló, P., Chover, M., Sbert, M., Feixas, M.: Viewpoint entropy-driven simplification method for textured triangle meshes. In: 5th International Conference on Computer Graphics Theory and Applications (GRAPP 2010), Angers, France, pp. 30–37 (2010)

  27. Castelló, P., Sbert, M., Chover, M., Feixas, M.: Viewpoint entropy-driven simplification. In: Proceedings of 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Plzen, Czech Republic, 2007, pp. 249–256

  28. Castelló, P., Sbert, M., Chover, M., Feixas, M.: Viewpoint-driven simplification using mutual information. Comput. Graph. 32(4), 451–463 (2008)

    Article  Google Scholar 

  29. Feixas, M., Sbert, M., González, F.: A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. (TAP) 6(1), 1–23 (2009)

    Article  Google Scholar 

  30. Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. VMV 01: Proceedings of the Vision Modeling and Visualization Conference, Stuttgart, Germany, 2001, pp. 273–280

  31. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  32. Rényi, A.: On measures of entropy and information. In: Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–561. University of California Press (1961)

  33. Viola, I., Feixas, M., Sbert, M., Groller, E.: Importance-driven focus of attention. IEEE Trans. Vis. Comput. Graph. 12(5), 933–940 (2006)

    Article  Google Scholar 

  34. Taneja, I.: Bivariate measures of type a and their applications. Tamkang J. Math. 19(3), 63–74 (1988)

    MathSciNet  MATH  Google Scholar 

  35. Tsallis, C.: Generalized entropy-based criterion for consistent testing. Phys. Rev. E 58(2), 1442–1445 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Education and Science (TIN2010-21089-C03-01, TIN2010-21089-C03-03, TIN2009-14103-C03-01), Caja Castellón Bancaja Foundation (P1.1B2010-08, P1.1B2009-34), the European Union (Ref. 226487), the Regional Government of Valencia (Project PROMETEO/2010/028, BEST/2011), and the Regional Government of Catalunya (2009-SGR-643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, C., Castelló, P., Chover, M. et al. Simplification method for textured polygonal meshes based on structural appearance. SIViP 7, 479–492 (2013). https://doi.org/10.1007/s11760-013-0450-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0450-5

Keywords

Navigation