Skip to main content
Log in

Image scaling algorithm using multichannel sampling in the linear canonical transform domain

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel image scaling algorithm based on the multichannel sampling in the linear canonical transform domain. In spite of the original image, we also consider the first and second derivatives of an image to improve the quality of the reshaped image. The proposed algorithm utilizes the second derivative sampling formula skilfully derived in the paper. In order to verify the effectiveness of the proposed algorithm, we compare it with three image scaling algorithms, i.e., the nearest neighbor algorithm, the bilinear algorithm and the Papoulis algorithm. Experimental results show the proposed algorithm yields significant improvements over the other three algorithms in performance according to different evaluation criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Almeida, L.B.: The fractional fourier transform and time–frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  2. Amanatiadis, A., Andreadis, I., Konstantinidis, K.: Design and implementation of a funzzy area-based image-scaling technique. IEEE Trans. Instrum. Meas. 57(8), 1504–1513 (2008)

    Article  Google Scholar 

  3. Battiato, S., Gallo, G., Stanco, F.: A locally-adaptive zooming algorithm for digital images. Elsevier Image Vis. Comput. J. 20(11), 805–812 (2002)

    Article  Google Scholar 

  4. Brown, J.L., Cabrera, S.D.: On well-posedness of the papoulis generalized sampling expansion. IEEE Trans. Circuits Syst. 38(5), 554–556 (1991)

    Article  Google Scholar 

  5. Carey, W.K., Chuang, D.B., Hemami, S.S.: Regularity-preserving image interpolation. IEEE Trans. Image Process. 8(9), 1293–1297 (1999)

    Article  Google Scholar 

  6. Carrato, S., Tenze, L.: A high quality 2 image interpolator. IEEE Signal Process. Lett. 7(6), 132–134 (2000)

    Article  Google Scholar 

  7. Chang, C., Chou, Y., Yu, Y., Shih, K.: An image zooming technique based on vector quantization approximation. Image Vis. Comput. 23(13), 1214–1225 (2005)

    Article  Google Scholar 

  8. Griffin, L.D.: The second order local image structure solid. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1355–1366 (2007)

    Article  Google Scholar 

  9. Hore, A., Ziou, D., Deschenes, F.: A new image scaling algorithm based on the sampling theorem of papoulis and application to color images. In: ICIAR 2007, pp. 1–11 (2007)

  10. Jung, J.H., Stefan, W.: A simple regularization of the polynomial interpolation for the resolution of the runge phenomenon. J. Sci. Comput. 46(2), 225–242 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kim, C.H., Seong, S.M., Lee, J.A., Kim, L.S.: Winscale: an image-scaling algorithm using area pixel model. IEEE Trans. Circuits Syst. Video Technol. 13(16), 549–553 (2003)

    Article  Google Scholar 

  12. Lehmann, T.M., Gönner, C., Spitzer, K.: Survey: interpolation methods in medical image processing. IEEE Trans. Med. Imaging 18(11), 1049–1074 (1999)

    Article  Google Scholar 

  13. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE. Trans. Image Process. 10(10), 1521–1527 (2001)

    Article  Google Scholar 

  14. Moshinsky, M., Quesene, C.: Linear canonical transformations and their unitary representations. J. Math. Phys. 12(8), 1772–1783 (1971)

    Google Scholar 

  15. Mukherjee, J., Mitra, S.K.: Enhancement of color images by scaling the dct coefficients. IEEE Trans. Image Process. 17(10), 1783–1793 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Application in Optics and Signal Processing. Wiley, NewYork (2001)

  17. Papoulis, A.: Generalized sampling theorem. IEEE Trans. Circuits Syst. 24(11), 652–654 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Parker, J.A., Kenyon, R.V., Troxel, D.E.: Comparison of interpolation methods for image resampling. IEEE Trans. Med. Image 2(1), 31–39 (1983)

    Article  Google Scholar 

  19. Pei, S.C., Tam, I.K.: Effective color interpolation in ccd color filter arrays using signal correlation. IEEE Trans. Circuits Syst. Video Technol. 13(6), 503–513 (2003)

    Article  Google Scholar 

  20. Sakamoto, T., Nakanishi, C., Hase, T.: Software pixel interpolation for digital still cameras suitable for a 32-bit mcu. IEEE. Trans. Consum. Electron 44(4), 1342–1352 (1998)

    Article  Google Scholar 

  21. Sharma, K.K., Joshi, S.D.: Papoulis-like generalized sampling expansions in fractional fourier domains and their application to superresolution. Opt. Comm. 278, 52–59 (2007)

    Article  Google Scholar 

  22. Sharma, K.K., Joshi, S.D.: Extrapolation of signals using the method of alternating projections in fractional fourier domains. Signal Image Video Process. 2(3), 177–182 (2008)

    Article  Google Scholar 

  23. Stern, A.: Sampling of compact signals in offset linear canonical transform domain. Signal Image Video Process. 1(4), 359–367 (2007)

    Article  MATH  Google Scholar 

  24. Thévenaz, P., Blu, T., Unser, M.: Image Interpolation and Resampling. Academic Press, Orlando (2000)

    Google Scholar 

  25. Thévenaz, P., Blu, T., Unser, M.: Interpolation revisited. IEEE Trans. Med. Imaging 19(7), 739–758 (2000)

    Article  Google Scholar 

  26. Unser, M., Thévenaz, P., Yaroslavsky, L.: Convolution-based interpolation for fast, high-quality rotation of images. IEEE Trans. Image Process. 4(10), 1371–1381 (1995)

    Article  Google Scholar 

  27. Wei, D., Ran, Q.W., Li, Y.M.: Generalized sampling expansion for bandlimited signals associated with the fractional fourier transform. IEEE Signal Process. Lett. 17(6), 595–598 (2010)

    Article  Google Scholar 

  28. Wei, D., Ran, Q.W., Li, Y.M.: Multichannel sampling and reconstruction of bandlimited signals in the linear canonical transform domain. IET Signal Process. 5(8), 712–727 (2011)

    Article  MathSciNet  Google Scholar 

  29. Wei, D., Ran, Q.W., Li, Y.M.: Multichannel sampling expansion in the linear canonical transform domain and its application to supperresolution. Opt. Comm. 284(23), 5424–5429 (2011)

    Article  Google Scholar 

  30. Wei, D., Ran, Q.W., Li, Y.M.: Reconstruction of band-limited signals from multichannel and periodic nonuniform samples in the linear canonical transform domain. Opt. Comm. 284(19), 4307–4315 (2011)

    Article  Google Scholar 

  31. Wei, D., Ran, Q.W., Li, Y.M.: Sampling of bandlimited signals in the linear canonical transform domain. Signal Image Video Process. (2012). 7(3), 533-558 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous referee for their valuable comments and suggestions that improved quality of this paper. This work was supported by National Natural Science Foundation of China under Grant 61171110 and National Basis Research Program of China under Grant 2013CB329003 and also supported by the Fundamental Research Funds for the Central Universities under Grant K5051370011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Sha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Sha, X. & Wei, D. Image scaling algorithm using multichannel sampling in the linear canonical transform domain. SIViP 8, 197–204 (2014). https://doi.org/10.1007/s11760-013-0523-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0523-5

Keywords

Navigation