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Abstract The lateral inhibition in accumulative compu-
tation (LIAC) algorithm has proved to be an efficient
method for moving object segmentation in gray-level video
sequences. This paper reviews the main steps and features of
the LIAC algorithm, and assesses the suitability of applying
the LIAC algorithm to the segmentation of color videos. Two
widely used color spaces, namely RG B and H L S, are used
for validating the LIAC algorithm, and a comparison is pro-
vided after performance evaluation of the algorithm in both
color spaces.

Keywords Lateral inhibition in accumulative computa-
tion · Moving objects · Color spaces · Video segmentation

1 Introduction

Color by itself is a powerful feature in the distinction and
recognition of objects. There are numerous papers dedicated
to color-based segmentation (e.g. [2,17]). H SI and RG B
color spaces are used for traffic sign detection [14]. Recently,
color and texture are modeled with the RG B space and L B P
method, respectively, to classify banknotes of different coun-
tries [13]. Also, some approaches use several image fea-
tures combined to color for the segmentation problem (e.g.
[23,24]). Other approaches use mixtures of deformable part
models to represent highly variable object classes [10]. This
work relies on the classification of partially labeled models
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using latent SVM formalisms. In a recent paper, a new color
space, called the RG B color ratio space, is proposed and
defined according to a reference color such that an image can
be transformed from a conventional color space to the RG B
color ratio space [6]. Another recent technique [3] copes with
contour detection and image segmentation integrated in the
so called algorithm gPb-owt-ucm. Combining motion and
color is also a well-known option [4]. An approach is pro-
posed where color segmented regions are used to constrain
the motion fitting [1]. Another approach also combines color
and motion information in an attempt to fuse color segmenta-
tions with motion estimates obtained using block correlations
[25]. Another paper exploits color information for both back-
ground subtraction and shadow detection to improve mov-
ing object segmentation and background update [7]. Another
framework takes as input two label fields [16], a quickly
estimated and to-be-refined segmentation map and a spatial
region map that exhibits the shape of the main objects of
the scene. Another recent approach combines morphologi-
cal, color and textural feature [5].

Now, lateral inhibition in accumulative computation
(LIAC) has proved to be an efficient method for moving
object segmentation in gray-level video sequences [22] and
has been implemented in real time [9]. Due to its versatility,
the LIAC method has been applied successfully to dynamic
visual attention [19] in surveillance applications [18] in order
to monitor human activities [11]. Also some works have
provided enhancements through the inclusion of genetic
algorithms [21] and stereoscopy [20]. The current paper
reviews two widely used color spaces—RG B and H L S—
and assesses the suitability of using the LIAC method in both
color spaces. The choice of a color model is of great impor-
tance for many computer vision algorithms. The RG B model
specifies colors using three primary intensities—red (R),
green (G) and blue (B)—which can be plotted along the axes
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of a unit cube. The H L S model is based on the perceptual
variables hue (H ), luminance (L) and saturation (S); it is one
of several related color spaces based on polar coordinates.

The rest of the paper is structured as described next. Sec-
tion 2 introduces the LIAC method in the motion detection
task in color videos. Section 3 introduces a set of exam-
ples which enable comparing the performance of the LIAC
method in two well-known color spaces, namely, RG B and
H L S. Lastly, Sect. 4 offers the most important discussion
and conclusions.

2 Lateral inhibition in accumulative computation
(LIAC)

The problem we are stating by means of LIAC is the discrimi-
nation of moving objects capable of holding our attention in a
scene. Motion allows to obtain gradually all moving objects’
shapes through a mechanism called accumulative compu-
tation. Then, the algorithm fuses spots obtained by means
of neurally inspired lateral inhibition (LI) and thresholding.
Figure 2a, b shows two consecutive input images (frames
133 and 136) from the BEHAVE Interactions Test Case Sce-
narios (downloaded from http://groups.inf.ed.ac.uk/vision/
BEHAVEDATA/INTERACTIONS/). Figure 2i shows the
result of applying LIAC to the sequence after frame num-
ber 136. The input images will be used as a running example
for a better understanding of the proposed method.

The complete LIAC architecture is shown in Fig. 1, where
the reader may have a first contact with the modules of the
method. From [12], we cite and reformulate the most impor-

Fig. 1 RG B-based LIAC architecture for color video sequences

tant concepts and equations of the LIAC method for the
motion detection task on videos. The adaptation of the LIAC
algorithm to color video requires to expand from one unique
gray-level component to three color components of the color
space used, be it RG B or H L S. In the equations adapted for
the color spaces (r/g/b) and (h/ l/s) are used for the three
components of the color spaces RG B and H L S, respec-
tively. Also (κ) stands generically for r, g, or b, and h, l, or
s, when the same equation applies to all color components.
Next, each one of the modules is described in detail. Also,
the influence of the most important parameters of the LIAC
algorithm are briefly explained. A more detailed explanation
of the parameters is available in a previous work [12].

2.1 Spatial quantization

The module performs an uniform quantization of the color
input image C(x, y; t) segmenting each component κ of the
color, that is to say Cκ

i (x, y; t), into a preset group of bands
(N ). A high value of N usually enables to better discriminate
the whole shapes of the moving non-rigid objects. Neverthe-
less, a too high value of this parameter may include some
image background into the shapes. This may even lead to
fuse more than one different shape into one single silhouette.

Now, there is a clear difference in RG B and H L S color
spaces. In the RG B color space, we have Eq. (1) for each
one of the color components:

λ
r/g/b
i (x, y; t)

=
{

1, if Cr/g/b(x, y; t)∈[Qr/g/b · i, Qr/g/b · (i +1)−1]
0, otherwise

(1)

where i ∈ [0..N − 1] is the band and Cr/g/b(x, y; t) is the
r, g or b component of the color input image at time instant t .
Notice that the value of quantization step Q differs depending
on the color space. For instance, r, g and b components range
from values 0 to 255. Therefore, the value 256 is used in the
formula. However, in the H L S color space, remember that
the h component ranges from 0◦ to 360◦, whereas the s and
l components range from 0 to 100 %. Thus, we have Eqs. (3)
and (4), with Q calculated as shown in Eq. (2).

Qκ =

⎧⎪⎨
⎪⎩

256
N , if κ ∈ r/g/b

360
N , if κ = h

100
N , otherwise

(2)

λh
i (x, y; t)

=
{

1, if Ch(x, y; t) ∈ [Qh · i, Qh · (i + 1) − 1]
0, otherwise

(3)

λ
l/s
i (x, y; t)

=
{

1, if Cl/s(x, y; t)∈[Ql/s · i, Ql/s · (i +1)−1]
0, otherwise

(4)
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(a) (b)

(c) (d) (e) (f)

(g) (i)

(h)

Fig. 2 Use of LIAC in color videos. a Running example input image
number 133 of the sequence. b Running example input image number
136 of the sequence. c R, G and B components for spatial quantization
on band N = 0. d R, G and B components for temporal motion detection
on band N = 0. e R, G and B components for spatio-temporal recharg-
ing on band N = 0. f R, G and B components for spatio-temporal
homogenization on band N = 0. g Spatial fusion results for R, G and
B components of the input image number 136. h Result after fusing the
charges of all bands. i Result after thresholding and human size fitting

Here Ch/ l/s(x, y; t) is the h, l or s component of the color
input image in H L S format at time instant t . For instance,
see the result for RG B on band N = 0 from the quantization
into N = 8 bands of the running example at Fig. 2c as well as
the quantization into 8 bands for the R-channel of an image
at Fig. 3b. The ranges of the original image within each band
are shown at Fig. 3c. From this point on, the formulas are the
same for both color spaces RG B and H L S.

2.2 Temporal motion detection

Now, a charge or discharge due to motion detection is per-
formed. This module has been designed to obtain the accu-
mulated charge qκ

i (x, y; t) on a quantization basis in 3 lay-
ers (color components), and each one of them will mem-
orize the value of the accumulative computation present
at time scale t for each pixel (x, y). Indeed, the accu-
mulated charge value at each band i (i = 0, . . . , N −
1), qκ

i , related to motion detection at each input image
pixel is obtained, as shown in the following formula:

Fig. 3 Results of the spatial and temporal quantization for image num-
ber 136 of the sequence. a Input R-channel of the frame. b Spatial
quantization results. c Ranges within each spatial quantization result. d
Temporal quantization results

qκ
i (x, y; t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vdis, if ((λκ
i (x, y; t) = 0) ∧

(λκ
i (x, y; t − Δt) = 0))

vsat, if ((λκ
i (x, y; t) = 0) ∧

(λκ
i (x, y; t − Δt) = 1) ∧

(λκ+th

i (x, y; t) = 0) ∧
(λκ−th

i (x, y; t) = 0))

vsat, if ((λκ
i (x, y; t) = 1) ∧

(λκ
i (x, y; t − Δt) = 0) ∧

(λκ+th

i (x, y; t − Δt) = 0) ∧
(λκ−th

i (x, y; t − Δt) = 0))

max[qκ
i (x, y; t − Δt) − vdm, vdis], otherwise

where λκ+th

i and λκ−th

i are defined to relax the division into
bands for RG B (and in a similar way for H L S) as:

λκ+th

i (x, y; t) =
⎧⎨
⎩

1, if Cκ+th
(x, y; t) ∈[( range

N + th
) · i, range

N · (i + 1) − 1
]

0, otherwise

λκ−th

i (x, y; t) =
⎧⎨
⎩

1, if Cκ−th
(x, y; t) ∈[( range

N − th
) · i, range

N · (i + 1) − 1
]

0, otherwise

where range = 256 for r, g and b components; range = 360
for h component; range = 100 for l and s components.

At each pixel (x, y), we are in front of three possibilities:

1. The charge value at pixel (x, y) is discharged down to
vdis (the minimum allowed charge value) when no motion
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information may be detected at band i . No motion infor-
mation is available as pixel (x, y) does not correspond to
band i .

2. The charge value at pixel (x, y) is saturated to vsat (the
maximum charge value) when motion is detected at t .
Motion is detected as image pixel now belongs to this
band at time instant t , and it did not correspond to the
band at the previous instant t − Δt , or vice versa taking
into account λκ+th

i and λκ−th

i .
3. The charge value at pixel (x, y) is decremented by a value

vdm when motion goes on being detected in consecutive
intervals t and t − Δt . Of course, the permanence value
cannot get off a minimum value vdis. Notice that the dis-
charge of a pixel by a quantity of vdm is the way to stop
maintaining attention to a pixel of the image that did cap-
ture our interest in the past. As it will be seen later on,
if a pixel is not directly or indirectly bound by means
of lateral inhibition mechanisms to a maximally charged
pixel, vsat, it goes down to the total discharge with time.

The results for the running example may be found in Fig.
2d and in more detail in Fig. 3d. The influence of vdm is
as follows. Different values of the discharge value due to
motion detection offer different trails of the movement in the
consecutive output images. When lowering the value of vdm,
more information of the history of the movement is obtained
through the offered trail.

2.3 Spatio-temporal recharging

Lateral inhibition is thought here to reactivate the accumu-
lated charge with an extra charge vrv of those pixels which
are partially loaded (charge different from vdis and vsat) and
directly or indirectly connected to maximally charged pix-
els (whose charge is equal to vsat). Thus, vrv is the recharge
value. Initially, the new charge values Qκ

i are initialized to
the charge values provided at the previous step, qκ

i .
Spatio-temporal recharging occurs in steps after t and

before the next frame. The value of Δτ will determine the
number of times the value at each pixel is calculated in accor-
dance with the distance of the connectivity.

In order to explain the notion of this step, we will say
that the activation toward the lateral modular structures (up,
down, right and left) is based on the following basic ideas: (1)
All modular structures with maximum accumulated charge
value vsat (saturated) output the charge toward the neighbors.
(2) All modular structures with a non-saturated charge value
allow passing this information through them if activated by
some neighbor (they behave as transparent structures to the
charge passing). (3) The modular structures with minimum
permanence value vdis (discharged) stop the passing of the
charge information toward the neighbors (they behave as

opaque structures). Therefore, we are in front of an explo-
sion of lateral activation which begins at the structures with
accumulated charge set to vsat, and spreads lineally toward
all directions, until a structure appears in the pathway with a
complete discharge. One important issue is that the recharge
at each pixel takes place at most once. The variable r is used
for controlling this fact. Passing the charge to the neighbors
is performed by using the variable o.

Initially, the values for variables o and r are setup depend-
ing on the charge value of each pixel (x, y), as follows:

– For pixels with maximum accumulated charge value vsat:
oκ

i (x, y) = 1 - to let passing the charge rκ
i (x, y) = 0 - to

not accept a recharge
– For pixels with minimum accumulated charge value vdis:

oκ
i (x, y) = 0 - to not let passing the charge rκ

i (x, y) = 0
- to not accept a recharge

– For pixels with intermediate accumulated charge value
vdis < v < vsat: oκ

i (x, y) = 0 - to not let passing the
charge rκ

i (x, y) = 1 - to accept a recharge

The spread of charge toward the neighbors, starting from
the pixels with maximum accumulated charge value vsat , may
be formulated as:

Qκ
i (x, y; t + l · Δτ) = vsat,

where l controls the number of iterations before the next
frame, as saturated pixels do not change their charge value.
Also, the control variables now change to:

oκ
i (x, y) = 0 - to not let passing the charge

rκ
i (x, y) = 0 - to not accept a recharge

The opaque discharged (vdis) pixels neither change their
charge value. No change is provided in variables i or o.

Qκ
i (x, y; t + l · Δτ) = vdis

oκ
i (x, y) = 0 - to not let passing the charge

rκ
i (x, y) = 0 - to not accept a recharge

Lastly, let us consider the situation of those pixels with
intermediate charge value. A recharge is only possible when
rκ

i (x, y) = 1 and when one direct neighbor is offering the
possibility of a recharge, that is oκ

i (x ± 1, y ± 1) = 1. So:
Qκ

i (x, y; t + l · Δτ) = min[Qκ
i (x, y; t + (l − 1) · Δτ) +

vrv, vsat],
if ((rκ

i (x, y) = 1) ∧ ((oκ
i (x − 1, y) = 1) ∨ (oκ

i (x + 1, y) =
1) ∨ (oκ

i (x, y − 1) = 1) ∨ (oκ
i (x, y + 1) = 1)))

After the recharge, we have:
oκ

i (x, y) = 1 - to let passing the charge
rκ

i (x, y) = 0 - to not accept a recharge
From this point on, as the pixel will not be recharged again:
Qκ

i (x, y; t + l · Δτ) = Qκ
i (x, y; t + (l − 1) · Δτ)

oκ
i (x, y) = 0 - to not let passing the charge

rκ
i (x, y) = 0 - to not accept a recharge

This scheme is repeated until it is not possible to recharge
any more pixels or the next frame arrives. See the results for
the running example in Fig. 2e. Notice that the recharge has
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as secondary effect, recovering part of the history of motion.
The accumulated charge of each pixel will be offered to the
following module as output.

2.4 Spatio-temporal homogenization

In this module, the charge is distributed among all the con-
nected neighbors holding a minimum charge (greater than
vdis), once again by means of lateral inhibition mechanisms.
Θκ

i , the homogenized charge value, is initialized to Qκ
i . This

occurs according to Eq. (6).

Θκ
i (x, y; t + m · Δτ)

= 1

1 + δx−1,y + δx+1,y + δx,y−1 + δx,y+1

×[Θκ
i (x, y; t + (m − 1) · Δτ) +

+ δx−1,y · Θκ
i (x − 1, y; t + (m − 1) · Δτ)

+ δx+1,y · Θκ
i (x + 1, y; t + (m − 1) · Δτ)

+ δx,y−1 · Θκ
i (x, y − 1; t + (m − 1) · Δτ)

+ δx,y+1 · Θκ
i (x, y + 1; t + (m − 1) · Δτ)] (5)

where

∀(α, β) ∈ [x ± 1, y ± 1], δα,β

=
{

1, if Θκ
i (α, β; t + (m − 1) · Δτ) > vdis

0, otherwise
(6)

The explanation of this data clustering-based method is as
follows. Starting from the values of the accumulated charge
values in each pixel on a band basis, we will see how it is
possible to obtain all the parts of a moving object. A part
of an object is just the union of pixels that are together and
in a same band. The charge is homogenized among all the
pixels that pertain to the same band and that are directly or
indirectly united to each other. This way, a double objective
will be obtained:

1. Diluting the charge due to the false image background
motion along the other pixels of the background. So, there
should be no presence of the motion characteristic of the
background, but we will rather keep motion of the objects
present in the scene.

2. Obtaining a parameter common to all the pixels of the
part of the object in a surrounding window with a same
band.

See the result of the homogenized accumulated charges
on the running example at Fig. 2f.

2.5 Spatial fusion

During this step, we take the maximum value of all outputs
of the i bands, as described in Eq. (7), to show the detected

blobs associated to a moving object as obtained for each color
component (see Fig. 2g):

Θκ(x, y; t) = arg max
i

Θκ
i (x, y; t) (7)

2.6 Spatial band fusion

The final output segmentation result is obtained as a logical
AND of the three Θ partial outputs, that is:

Θ(x, y; t) = Θκ1(x, y; t) ∧ Θκ2(x, y; t) ∧ Θκ3(x, y; t) (8)

Also, you may take a look at Fig. 2h.

2.7 Spatial post-processing

This module performs a binarization with threshold Θobj

[see Eq. (9)]. Values over threshold are set to max (255)
and below threshold are set to min (0). Once the image is
binarized, some morphologic operations leading to eliminate
image noise are performed. Firstly, an erosion is performed
in order to eliminate isolated and small spots [see Eq. (10)].
This is done a number of times no. And, secondly, a dilation
operation is computed (a number of times nc) to enhance the
remaining spots [see Eq. (11)].

Θb(x, y; t) =
{

min, if Θ(x, y; t) ≤ Θobj

max, otherwise
(9)

Θo(x, y; t) = Θb(x, y; t) �
∣∣∣∣∣∣
0 1 0
1 1 1
0 1 0

∣∣∣∣∣∣ (10)

Θc(x, y; t) = Θo(x, y; t) ⊕
∣∣∣∣∣∣
0 1 0
1 1 1
0 1 0

∣∣∣∣∣∣ (11)

Finally, spots are filtered based on their features, such as
height, width and compactness. For this purpose, minimum
and maximum values are established: hmin and hmax for the
height, wmin and wmax for the width, and cmin and cmax for the
compactness. Visually, we have the result shown on Fig. 2i.

3 Data and results

A qualitative and quantitative comparison of the performance
of the LIAC algorithm in color video for RG B and H L S
color spaces is provided in this section. Also, a quantitative
comparison between color-based and gray-level-based LIAC
is introduced. Firstly, Sect. 3.1 introduces the metrics used
for the quantitative assessment of the LIAC performance.
Then, in Sect. 3.2 the two input data video sequences used as
case studies, namely BEHAVE and CAVIAR, are described.

123

Author's personal copy



1184 SIViP (2014) 8:1179–1188

Lastly, some qualitative and quantitative results are offered
in Sects. 3.3 and 3.4, respectively.

3.1 Metrics definition and setup

Before explaining the metrics to evaluate the performance
of the algorithm in the color spaces, let us define the basic
concepts used for their calculation. First of all, we have to
highlight that all the metrics are related to the bounding boxes
of the moving objects detected by the LIAC algorithm. In
agreement with the computer vision community, we accept
the following standard definitions:

– True Positive (TP): the system has detected a real situa-
tion (bounding box exists in reference data and algorithm
results).

– False Positive (FP): the system has detected a situation
that is not real (bounding box exists only in algorithm
results).

– False Negative (FN): a real situation has been missed by
the system (bounding box exists only in reference data).

The previous data provide input to some of the most
accepted metrics. These are:

– Precision: indicates the true positives ratio over the whole
set of detections (true positives + false positives).

Precision = T P

T P + F P
(12)

– Recall: approximates the probability of the positive label
being true; in other words, it assesses the effectiveness of
the algorithm on a single class. A recall of 100 % means
that the test recognizes all positives.

Recall = T P

T P + F N
(13)

– F-score: is a measure of a test’s accuracy. It considers
both the precision and the recall of the test to compute
the score. The F-score can be interpreted as a weighted
average of the precision and recall (see Eq. (14)), where
an F-score reaches its best value at 1 and worst score at
0.

F − score = 2 × precision × recall

precision + recall
(14)

We have experimentally established that a spot detected
by the LIAC algorithm (and represented as its bounding box)
matches a bounding box existing in the reference data if
F-score > 0.15. This minimum F-score value ensures that
bounding boxes in algorithm result and reference data with

low overlapping areas are discarded, and considered as a false
positive (FP) plus a false negative (FN).

A threshold F-score of 0.15 was experimentally selected.
This value is motivated through the two reasons explained
next. Firstly, let us point out the motion direction trails gen-
erated by the LIAC algorithm (see Fig. 4a, where the green
box corresponds to the detected blob including the trail due
to accumulative computation and the blue box corresponds
to the ground truth). Due to the trails, the bounding boxes
of the detected objects use to be greater than the real objects
contained. Indeed, the bounding boxes not only contain the
moving object at its current location, but also a part of the
moving object in some previous locations depending on the
LIAC parameters established and the speed of the moving
object. This imposes a low value of the F-score threshold to
avoid a number of missed detections.

Secondly, there is the situation of little overlapping
between the ground truth and the detected objects. This is
motivated due to two possible reasons. In first place, there is
the typical problem of moving objects only partially detected
(e.g. due to occlusions or to bad segmentation performance
in some specific lightning conditions; see Fig. 4b, c). In this
case, a too low value of the F-score threshold does not work
properly. Indeed, if the F-score threshold is too low, a small
overlapping can be considered as a hit (see Fig. 4c, d). This
kind of small overlapping may be caused by the intersection
between the trails of two objects or the overlapping of a false
positive with the ground truth.

Fig. 4 Toward an optimal F-score threshold. a The blob detected by
the LIAC algorithm is greater than the ground truth due to the char-
acteristic accumulative computation trail. b Part of the human has not
been detected by the LIAC algorithm, and there is part of the trail in
the detected blob. c Most of the human has not been detected, and the
ground truth contains the detected blob. d Overlapping of a false positive
with the ground truth
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3.2 Input videos description

3.2.1 BEHAVE and CAVIAR scenarios

In first place, we have tested the LIAC algorithm in the
BEHAVE Interactions Test Case Scenario 0 (see http://
groups.inf.ed.ac.uk/vision/BEHAVEDATA/), composed of
11, 200 image frames. The data set comprises of various
scenarios of people acting out various interactions. The data
are captured at 25 frames per second. The resolution is 640
× 480. A lot (but not all) of the video sequences have
ground truth bounding boxes of the humans in the scene.
In the BEHAVE Interactions Test Case Scenario 0, there
are five subsequences: grouped humans with little motion,
groups with median motion, a vehicle crossing the scenario,
a cyclist crossing the scenario and humans crossing the
scenario.

Then, we have tested the algorithm in the CAVIAR Test
Case Scenario “Walk1” (see http://homepages.inf.ed.ac.uk/
rbf/CAVIARDATA1/). For the CAVIAR project, a num-
ber of video clips were recorded acting out the different
scenarios of interest. These include people walking alone,
meeting with others, window shopping, entering and exit-
ing shops, fighting and passing out and leaving a package
in a public place. The first section of video clips (including
the “Walk1” scenario) was filmed with a wide angle cam-
era lens at the entrance lobby of the INRIA Labs at Greno-
ble, France. The resolution is half-resolution PAL standard
(384 × 288 pixels, 25 frames per second). In CAVIAR,
we may find only one type of subsequence, where some
persons are crossing the scenario. Table 1 shows the val-
ues used for the most important parameters of the LIAC
algorithm.

Table 1 Values for the most relevant parameters of the LIAC algorithm

Test case BEHAVE CAVIAR

Number of bands 8 8

Maximum charge value (vsat) 255 255

Minimum charge value (vdis) 0 0

Discharge value (vdm) 63 63

Recharge value (vrv) 31 31

Number of erosions (no) 1 2

Number of dilations (nc) 3 5

Minimum height (hmin) 30 20

Maximum height (hmax) 500 70

Minimum width (wmin) 30 20

Maximum width (wmax) 500 70

Minimum compactness (cmin) 1 1

Maximum compactness (cmax) 100 100

3.2.2 Ground truth files description

In order to evaluate the performance of the algorithm, we
have used the reference data provided by the BEHAVE and
CAVIAR projects as ground truth files. It has been necessary
to implement a tool for transforming the data models of both
projects into a common model, capable of providing the data
needed to perform the performance assessment. The selected
model is the one used in the OTCBVS Benchmark Dataset
Collection [8] (see http://www.cse.ohio-state.edu/otcbvs-bench/).
Here, each frame indicates the number of objects and the rec-
tangle containing each object, (xmin, ymin, height, width).
The overall structure of the original ground truth files is the
following one:

– Ground truth for BEHAVE: organizes the sequence in an
XML file on the basis of the objects that are present. For
each object, the frame ranges where the object appears
are provided, as well as the position of the object in each
frame range.

– Ground truth for CAVIAR: provides much more infor-
mation on the objects. Firstly, for each frame, CAVIAR
provides information at object and at group of objects
level. And, for each object or group, it indicates its posi-
tion, height and width, and some other features related to
the activities performed. It also gives the orientation in
the vertical axis.

Let us also highlight that a direct comparison of the algo-
rithm results and the reference data has not been possible.
This is due to two reasons. In first place, the ground truth files
(CAVIAR and BEHAVE) only contain information about the
persons, and not about other kinds of moving objects that
might be detected from their motion. Nevertheless, the LIAC
algorithm will detect the moving vehicle, which would be
classified as false positive when matched toward the ground
truth. Therefore, this case, for instance, has not been consid-
ered when obtaining the statistics, although it is shown as a
result of the algorithm segmentation.

In second place, the ground truth data offer the positions
of the people even if they are motionless during some time.
As the LIAC algorithm is motion-based, it is not able to
detect these people unless they move a sufficient distance.
This is why for every non-detected human, we consider the
possibilities that the human has not changed its position since
the previous frame (he/she is stationary) or that the position
has only varied slightly (he/she is quite still). For this last
case, a tolerance of ±2 pixels at each corner of the bounding
box is assumed.

3.3 Qualitative comparison between RG B- and
H L S-based LIAC

Some qualitative results for the BEHAVE Test Case Scenario
0 are offered in Fig. 5. Figure 5a–f shows some frames with
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Fig. 5 Qualitative results of applying the color-based LIAC algorithm
to the BEHAVE test case; yellow and red bounding boxes correspond to
the output of the RG B-based and H L S-based LIAC algorithm, respec-
tively. a Moving car and people moving slightly. b Moving cyclist and
non-moving people. c and d Moving people. e People moving slowly.
f A moving human (color figure online)

significant outputs. In the input video frames, red and yellow
bounding boxes stand for moving objects as segmented in the
RG B and H L S color spaces, respectively. Figure 5a shows
frames 9,303, 9,320, 9,333, 9,359 and 9,363 containing a
moving car and people moving slowly. In Fig. 5b, we have
frames 3,684, 3,692, 3,704, 3,713 and 3,728, where you may
observe a moving cyclist and some stationary people. Figure
5c, d are examples of the presence of moving people (frames
6,327, 6,357, 6,369, 6,376 and 6,398, as well as frames 102–
104, 107 and 109). Figure 5e, composed of frames 122–125
and 133, contains people with little motion. Lastly, we offer
the results of the segmentation of a single moving human in
Fig. 5f (frames 4,379–4,383).

As you may easily observe in the figure, generally LIAC
in RG B color space has a better performance than LIAC in
H L S in all subsequences. Indeed, in RG B, a greater num-
ber of moving objects is detected. This is the case even in
sequences with little motion (see Fig. 5e), where in RG B
produces a greater number of true positives. In Fig. 5b, we
may observe that the LIAC algorithm is capable of detect-
ing the cyclist in both color spaces with a great precision,
while the humans are ignored as they have too little motion.
In the last frame shown, both bounding boxes coincide. In

Fig. 5a, the algorithm tends to unite the grouped persons,
independently of the color space used. Also in this case the
performance has better hits (true positives) in the RG B color
space.

3.4 Quantitative comparison between RG B- and
H L S-based LIAC

After calculating the metrics introduced previously, we get
the results shown in Table 2. Again, it is easy to observe that
the LIAC algorithm in the RG B color space outperforms the
algorithm in H L S color space. The number of true positives
in RG B is greater for both test cases BEHAVE and CAVIAR.
Also the number of false negatives is much lower in RG B
for both test cases. Therefore, although the LIAC algorithm
possesses a great recall in both color spaces, it is closer to
the ideal case (a value of 1) for RG B. The same is confirmed
through the comparison of the F-score values in the couple
of test cases. The values offered by the LIAC algorithm used
in the RG B color space are quite better.

3.5 Quantitative comparison between gray-level- and
color-based LIAC

Also, a comparison with processed gray-level videos (obtained
through the L component of the H L S color space) is offered
in this new version. As shown in Table 2, the results largely
suffer from illumination changes in the tested environment.
CAVIAR images belong to an indoor data set (with quite con-
stant illumination), while BEHAVE videos are composed of
outdoor images (with important illumination changes). The
results of the LIAC algorithm using gray-level images show
how high illumination changes lower the algorithm perfor-
mance. This is translated into the results with an F-score
of 0.79 and values of precision and recall of 0.79 and 0.66,
respectively, produced by high false positives and negatives
rates.

At this point, it is worth explaining that blobs in the L
component are often discarded since their shadows are some-
times included within the proper area of the blob, resulting on
a height higher than hmax or a width above wmax. For this rea-
son, some blobs are discarded, provoking false negatives. The
AND operation between the three color components results
in a reduction of the object area, since the H and S com-
ponents might contain more accurate representations of the
object’s area and location. The new width and height of the
object after this operation enable the blob to be within the
acceptable ranges of width and height, leading to a higher
number of true positives. Notice that the running parame-
ters are the same for all input videos (color or gray-level) as
offered in Table 1.
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Table 2 Quantitative results of applying the color-based LIAC algorithm to BEHAVE and CAVIAR test cases

BEHAVE CAVIAR

L RG B H L S L RG B H L S

TP 5,623 (55.87 %) 9,996 (97.06 %) 7,812 (75.88 %) 232 (88.89 %) 224 (91.05 %) 199 (77.13 %)

FP 1,495 (14.85 %) 125 (1.21 %) 127 (1.23 %) 28 (10.62 %) 19 (7.72 %) 31 (12.02 %)

FN 2,946 (29.27 %) 177 (1.71 %) 2,356 (22.88 %) 1 (0.38 %) 3 (1.22 %) 28 (10.85 %)

Precision 0.790 0.988 0.984 0,892 0.922 0.865

Recall 0.656 0.983 0.768 0,996 0.987 0.877

F-score 0.717 0.985 0.863 0,941 0.953 0.871

Table 3 Quantitative results of LIAC and MoG in BEHAVE and CAVIAR test cases

BEHAVE CAVIAR

LIAC L LIAC RG B MoG LIAC L LIAC RG B MoG

TP 5,623 (55.87 %) 9,996 (97.06 %) 8,093 (76.11 %) 232 (88.89 %) 224 (91.05 %) 229 (94.63 %)

FP 1,495 (14.85 %) 125 (1.21 %) 2,538 (23.86 %) 28 (10.62 %) 19 (7.72 %) 12 (4.96 %)

FN 2,946 (29.27 %) 177 (1.71 %) 2 (0.00 %) 1 (0.38 %) 3 (1.22 %) 1 (0.41 %)

Precision 0.790 0.988 0.761 0,892 0.922 0.950

Recall 0.656 0.983 0.999 0,996 0.987 0.995

F-score 0.717 0.985 0.864 0,941 0.953 0.972

3.6 Comparison with other approaches

In first place, based on the quantitative results shown in [26]
and [15], we establish the following qualitative comparison.
As you may observe, our approach in RGB color space offers
a ratio of true positives around 97 %. In most cases, this result
is better than the results provided in the before mentioned
papers processing outdoor sequences. Moreover, taking into
account the numerical results provided in [26], it seems clear
that our approach throws excellent results.

Now, the validity of this proposal is assessed through
a quantitative comparison with a state-of-the-art technique
that has proved to offer good results, namely background/
foreground segmentation based on a mixture of Gaussians
(MoG) [27]. One important feature of this algorithm is that
it selects the appropriate number of Gaussian distribution for
each pixel. It provides good adaptability to varying scenes
due illumination changes etc. As shown in Table 3, the LIAC
RG B version outperforms the MoG one with a wide margin.
In the case of the CAVIAR data set, both RG B and L ver-
sions of LIAC offer competitive results in comparison with
the MoG-based approach. Moreover, when comparing the
average F-score for our best performing LIAC alternative,
0.969, to the one from MoG, 0.918, some advantage of our
approach is emphasized. Notice that values in bold show the
best results obtained.

A qualitative comparison with other well-known
approaches has also been included in order to highlight the

performance of our proposal. There are two main reasons that
do not enable presenting a strong quantitative comparison
with other approaches. Firstly, the results provided within
the different experiments do not show which criteria have
been considered when selecting a hit from the overlapping
area between the ground truth data and the detected region.
And, secondly, as the processed sequences are also different
from one paper to another, it is impossible to establish a fully
objective comparison.

4 Conclusions

This paper is motivated by the results obtained during the
last few years by LIAC for moving object segmentation in
gray-level video sequences. Nowadays, color video is com-
monly used in many applications, such as visual surveillance.
Therefore, we have studied the suitability of using the LIAC
method in two widely used color spaces (RG B and H L S).
Firstly, the LIAC algorithm for motion detection in color
video has been introduced. Then, the performance of LIAC
algorithm in both color spaces has been compared. For this
purpose, some videos from the BEHAVE and CAVIAR test
cases, as well as their respective reference data, have been
tested for color spaces RG B and H L S. Also, the tests have
been performed on the L component of the video images. It
has been demonstrated (qualitatively and quantitatively) that
the LIAC algorithm has an overall better behavior in RG B
color space over H L S color space and gray level.
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