Skip to main content
Log in

Segmentation of video background regions based on a DTCNN-clustering approach

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

We propose a novel algorithm for segmentation of video background models in time-variant scenarios. It is robust to gradual or abrupt illumination changes, diverse kind of noises, and even scenario variation. The algorithm generates regions according to the scene composition by keeping region segmentation coherence. The proposed method based on a discrete-time cellular neural network estimates the number regions in the current background model, and then, a modified k-means algorithm is used to achieve segmentation. The findings demonstrate the robustness of the method and its superiority over two state of the art scene segmentation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ramana-Murthy, O.V., Roy, S., Narang, V., Hanmandlu, M., Gupta, S.: An approach to divide pre-detected Devanagari words from the scene images into characters. Signal Image Video Process. 7(6), 1071–1082 (2013)

    Article  Google Scholar 

  2. Mahbub, U., Imtiaz, H., Ahad Md., A.R.: Action recognition based on statistical analysis from clustered flow vectors. Signal Image Video Process. 8(2), 243–253 (2014)

    Article  Google Scholar 

  3. Akram, M., Izquierdo, E.: Fast motion estimation for surveillance video compression. Signal Image Video Process. 7(6), 1103–1112 (2013)

    Article  Google Scholar 

  4. Tu, Z., Bhattacharya, P.: Game-theoretic surveillance over arbitrary floor plan using a video camera network. Signal Image Video Process. 7(4), 705–721 (2013)

    Article  Google Scholar 

  5. Shah, P., Reddy, B.C., Shabbir, Merchant, N., Desai, U.B.: Context enhancement to reveal a camouflaged target and to assist target localization by fusion of multispectral. Signal Image Video Process. 7(3), 537–552 (2013)

    Article  Google Scholar 

  6. Stauffer C., Grimson W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2 (1999)

  7. Jiaming, Z., Chi-Hau, C.: Moving objects detection and segmentation in dynamic video backgrounds. In: Proceedings of the IEEE Conference on Technologies for Homeland Security, pp. 64–69 (2007)

  8. Wei-Kai, C., Shao-Yi, C.: Real-Time memory-efficient video object segmentation in dynamic background with multi-background registration technique. In: Proceedings of the IEEE 9th Workshop on Multimedia Signal Processing, pp. 219–222 (2007)

  9. Qingsong, Z., Song, S.: A novel recursive bayesian learning-based method for the efficient and accurate segmentation of video with dynamic background. IEEE Trans. Image Process. 21(9), 3865–3876 (2012)

  10. Tsai, D.M., Lai, S.C.: Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans. Image Process. 18(1), 158–167 (2009)

    Article  MathSciNet  Google Scholar 

  11. Huerta, I., Amato, A., Roca, X., Gonzalez, J.: Exploiting multiple cues in motion segmentation based on background subtraction. Neurocomputing 100, 183–196 (2013)

    Article  Google Scholar 

  12. Yin, J., Han, Y., Hou, W., Li, J.: Detection of the mobile object with camouflage color under dynamic background based on optical flow. Procedia Eng. 15, 2201–2205 (2011)

    Article  Google Scholar 

  13. Park, D., Byun, H.: A unified approach to background adaptation and initialization in public scenes. Pattern Recogn. 46, 1986–1997 (2013)

    Google Scholar 

  14. Maddalena, L., Petrosino, A.: The SOBS algorithm: What are the limits? In: Proceedings of Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on, pp. 21–26 (2012)

  15. Chacon-Murguia, M.I., Gonzalez-Duarte, S.: An adaptive neural-fuzzy approach for object detection in dynamic backgrounds for surveillance systems. IEEE Trans. Ind. Electron. 59(8), 3286–3298 (2012)

    Article  Google Scholar 

  16. Ali, I., Mille, J., Tougne, L.: Space-time spectral model for object detection in dynamic textured background. Pattern Recogn. Lett. 33(13), 1710–1716 (2012)

    Article  Google Scholar 

  17. Szpak, Z.L., Tapamo, J.L.: Maritime surveillance: tracking ships inside a dynamic background using a fast level-set. Expert Syst. Appl. 38(6), 6669–6680 (2011)

    Article  Google Scholar 

  18. Perdomo, D., Alonso, J.B., Travieso, C.M., Ferrer, M.A.: Automatic scene calibration for detecting and tracking people using a single camera. Eng. Appl. Artif. Intell. 26(2), 924–935 (2013)

    Article  Google Scholar 

  19. Corcoran, P., Windstanley, A., Mooney, P., Middleton, R.: Background foreground segmentation for SLAM. IEEE Trans. Intell. Transp. Syst. 12(4), 1177–1183 (2011)

    Article  Google Scholar 

  20. Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35(10), 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  21. Chacón-Murguia, M.I., Urias-Zavala, J.D.: A comparison between a DTCNN and SOM like approach for dynamic object detection in videos. In: Proceedings of the North American Fuzzy Information Processing Society, pp. 1–6 (2012)

  22. Wilbik, A.: Cellular neural networks for color image segmentation. Lect. Notes Comput. Sci. 3696, 525–530 (2005)

    Article  Google Scholar 

  23. Shuhua, L., Gaizhi, G.: The application of improved HSV color space model in image processing. In: Proceedings of 2nd International Conference onFuture Computer and Communication, vol. 2, pp. V2-10–V2-13 (2010)

  24. An, Y., Riaz, M., Park, J.: CBIR based on adaptive segmentation of HSV color space. In: Proceedings of 12th International Conference on Computer Modelling and Simulation, pp. 248–251 (2010)

  25. Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using the HSV color space for image retrieval. In: Proceedings of International Conference on Image Processing, pp. 589–592 (2002)

  26. Ma, J.: Content-based image retrieval with HSV color space and texture features. In: Proceedings of International Conference on Web Information Systems and Mining, pp. 61–63 (2009)

  27. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  28. Couceiro, M.S., Rocha, R.P.: Introducing the fractional-order darwinian PSO. Signal Image Video Process. 6(3), 343–350 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to TNM, by the support of this research under grants Chi-Mciet-2012-105,Chi-Mciet-2013-230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario I. Chacon-Murguia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chacon-Murguia, M.I., Ramirez-Quintana, J. & Urias-Zavala, D. Segmentation of video background regions based on a DTCNN-clustering approach. SIViP 9 (Suppl 1), 135–144 (2015). https://doi.org/10.1007/s11760-014-0718-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0718-4

Keywords

Navigation