Skip to main content
Log in

Orthogonal planar search (OPS) for coronary artery centerline extraction

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate orthogonal planar search (OPS) for coronary artery centerline extraction to assist in coronary artery diseases diagnosis. The search mechanism exploits a data-driven algorithm to extract the centerline. Firstly, the best representation of vessel cross section on orthogonal planar is determined. Then, the center of gravity from the crosssection is computed as centerline point iteratively. Branching detection and termination are invoked in this proposed method. We demonstrate the results quantitatively and qualitatively. In addition, we benchmark OPS with three state-of-the-art methods and illustrate the comparison results in radar chart (also known as spider chart). Finally, we discuss limitations of OPS and future works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang, S., Chan, C.S.: A neighbourhood search feedback for coronary artery centerline tracking. In: MVA2013 IAPR International Conference on Machine Vision Applications, pp. 85–88, May 20–23 (2013)

  2. Goldenberg, R., et al.: Computer-aided simple triage (CAST) for coronary CT angiography (CCTA). Int. J. Comput Assist. Radiol. Surg. 7(6), 819–827 (2012)

    Article  Google Scholar 

  3. Zambal, S., Hladuvka, J., Kanitsar, A., Bühler, K.: Shape and appearance models for automatic coronary artery tracking. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1420 (2008). Accessed 9 Dec 2010

  4. Yang, G., et al.: Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography. Int. J. Cardiovasc. Imaging 28(4), 921–933 (2012)

    Article  Google Scholar 

  5. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  6. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)

    Article  Google Scholar 

  7. Bouraoui, B., Ronse, C., Baruthio, J., Passat, N., Germain, P.: 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Comput. Med. Imaging Graph. 34(5), 377–387 (2010)

    Article  Google Scholar 

  8. Chen, Z., Molloi, S.: Automatic 3D vascular tree construction in CT angiography. Comput. Med. Imaging Graph. 27(6), 469–479 (2003)

    Article  Google Scholar 

  9. Xu, Y., Liang, G., Hu, G., Yang, Y., Geng, J., Saha, P.K.: Quantification of coronary arterial stenoses in CTA using fuzzy distance transform. Comput. Med. Imaging Graph. 36(1), 11–24 (2012)

    Article  Google Scholar 

  10. Isola, A., Metz, C., Schaap, M., Klein, S., Grass, M., Niessen, W.J.: Cardiac motion-corrected iterative cone-beam CT reconstruction using a semi-automatic minimum cost path-based coronary centerline extraction. Comput. Med. Imaging Graph. 36(3), 215–226 (2012)

    Article  Google Scholar 

  11. Mueller, D., Maeder, A.: Robust semi-automated path extraction for visualising stenosis of the coronary arteries. Comput. Med. Imaging Graph. 32(6), 463–475 (2008)

    Article  Google Scholar 

  12. Schaap, M., Metz, C., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Bauer, C., Bogunovi, H., Castro, C., Deng, X., Dikici, E., O’Donnell, T., Frenay, M., Friman, O., Hoyos, M., Kitslaar, P., Krissian, K., Khnel, C., Luengo-Oroz, M., Orkisz, M., Smedby, O., Styner, M., Szymczak, A., Tek, H., Wang, C., Warfield, S., Zambal, S., Zhang, Y., Krestin, G., Niessen, W.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5), 701–714 (2009)

  13. Bauer, C., Bischof, H.: Edge based tube detection for coronary artery centerline extraction. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1403 (2008). Accessed 9 Dec 2010

  14. Castro, C., Luengo-Oroz, M., Santos, A., Ledesma-Carbayo, M.: Coronary artery tracking in 3D cardiac CT images using local morphological reconstruction operators. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1436 (2008). Accessed 9 Dec 2010

  15. Dikici, E., O’Donnell, T., Grady, L., Setser, R., White, R.D.: Coronary artery centerline tracking using axial symmetries. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1425 (2008). Accessed 9 Dec 2010

  16. Friman, O., Kühnel, C., Peitgen, H.-O.: Coronary centerline extraction using multiple hypothesis tracking and minimal paths. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1433 (2008). Accessed 9 Dec 2010

  17. Gülsün, M.A., Tek, H.: Robust vessel tree modeling. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 602–611. Springer (2008)

  18. Krissian, K., Bogunovic, H., Pozo, J., Villa-Uriol, M., Frangi, A.: Minimally interactive knowledge-based coronary tracking in CTA using a minimal cost path. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1435 (2008). Accessed 9 Dec 2010

  19. Metz, C., Schaap, M., Van Walsum, T., Niessen, W.: Two point minimum cost path approach for CTA coronary centerline extraction. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1510 (2008). Accessed 9 Dec 2010

  20. Szymczak, A.: Vessel tracking by connecting the dots. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1406 (2008). Accessed 9 Dec 2010

  21. Tek, H., Gulsun, M.A., Laguitton, S., Grady, L., Lesage, D., Funka-Lea, G.: Automatic coronary tree modeling. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1426 (2008). Accessed 9 Dec 2010

  22. Wang, C., Smedby, Ö.: Coronary artery segmentation and skeletonization based on competing fuzzy connectedness tree. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 311–318. Springer (2007)

  23. Zhang, Y., Chen, K., Wong, S.: 3D interactive centerline extraction. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1417 (2008). Accessed 9 Dec 2010

  24. Hoyos, M.H., Zuluaga, M.A., Lozano, M., Prieto, J.C., Douek, P.C., Magnin, I.E., Orkisz, M.: Coronary centerline tracking in CT images with use of an elastic model and image moments. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1401 (2008). Accessed 9 Dec 2010

  25. Kitslaar, P.H., Frenay, M., Oost, E., Dijkstra, J., Stoel, B., Reiber, J.H.: Connected component and morpholgy based extraction of arterial centerlines of the heart (cocomobeach). In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1460 (2008). Accessed 9 Dec 2010

  26. Mohan, V., Sundaramoorthi, G., Tannenbaum, A.: Tubular surface segmentation for extracting anatomical structures from medical imagery. IEEE Trans. Med. Imaging 29(12), 1945–1958 (2010)

    Article  Google Scholar 

  27. Cetin, S., Demir, A., Yezzi, A., Degertekin, M., Unal, G.: Vessel tractography using an intensity based tensor model with branch detection. IEEE Trans. Med. Imaging 32(2), 348–363 (2013)

    Article  Google Scholar 

  28. Leschka, S., et al.: Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur. Heart J. 26(15), 1482–1487 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szeling Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Chan, C.S. Orthogonal planar search (OPS) for coronary artery centerline extraction. SIViP 10, 335–342 (2016). https://doi.org/10.1007/s11760-014-0746-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0746-0

Keywords

Navigation