Skip to main content
Log in

Improved navigation-based motion compensation for LFMCW synthetic aperture radar imaging

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a new motion compensation algorithm using navigation data is proposed for frequency domain algorithm of synthetic aperture radar (SAR) imaging. SAR processing method assumes that the sensor is moving in a straight line at a constant speed; however in reality, a SAR platform will deviate from this ideal. This non-ideal motion can seriously degrade the SAR image quality. In this study, the linear frequency-modulated continuous wave SAR signal model is presented. The effects of non-ideal motion during the SAR signal modeling are investigated, and new method for motion correction is developed. This new motion compensation algorithm is verified with simulated data and with actual data collected using FMCW mode SAR dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mao, Y., Xiang, M., Wei, L., Horem, S.H.: The effect of IMU inaccuracies on airborne SAR imaging. J. Electron. (China) 28(4–6), 409–418 (2011)

    Article  Google Scholar 

  2. Horemuz, M., Andersson, J.V.: Polynomial interpolation of GPS satellite coordinates. GPS Solut. 10, 67–72 (2006)

    Article  Google Scholar 

  3. Gonzalez, P.J.T., Almorox, G.P., Burgos, G.M., Dorta, N.B.P.: SAR system for UAV operation with motion error compensation beyond the resolution cell. Sensors 8(5), 3384–3405 (2008)

    Article  Google Scholar 

  4. Kirk, J.C.: Motion compensation for synthetic aperture radar. IEEE Trans. Aerosp. Electr. Syst. AES-11 3, 338–348 (1975)

    Article  Google Scholar 

  5. Meta, A., de Wit, J., Hoogeboom, P.: Development of a high resolution airborne millimeter wave FM-CW SAR. In: Proceedings of the First European Radar Conference, pp. 209–212 (2004)

  6. Edrich, M.: Design overview and flight test results of the miniaturised SAR sensor MISAR. In: Proceedings of the First European Radar Conference, pp. 205–208 (2004)

  7. Meta, A., Hakkaart, P., Zwan, F., Hoogeboom, P., Ligthart, L.: First demonstration of an X-band airborne FMCW SAR. In: Proceedings of the 6th European Conference on Synthetic Aperture Radar (2006)

  8. Zaugg, E., Hudson, D., Long, D.: The BYU uSAR: A small, student-built SAR for UAV operation. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, pp. 411–414 (2006)

  9. Edwards, M., Madsen, D., Stringham, C., Margulis, A., Wicks, B., Long, D.: MicroASAR: a small, robust LFM-CW SAR for operation on UAVs and small aircraft. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, vol. 5, pp. 514–517 (2008)

  10. Wang, W., Peng, Q., Cai, J.: Waveform-diversity-based millimeter wave UAV SAR remote sensing. IEEE Trans. Geosci. Remote Sens. 47(3), 691–700 (2009)

    Article  Google Scholar 

  11. Stevens, D.R., Cumming, I.G., Gray, A.L.: Options for airborne interferometric SAR motion compensation. IEEE Trans. Geosci. Remote Sens. 33(2), 409–420 (1995)

    Article  Google Scholar 

  12. Zaugg, E., Long, D.: Theory and application of motion compensation for LFM-CW SAR. IEEE Trans. Geosci. Remote Sens. 46(10), 2990–2998 (2008)

  13. Wang, R., Luo, Y.H., Deng, Y.K., Zhang, Z.-M., Liu, Y.: Motion compensation for high-resolution automobile FMCW SAR. IEEE Geosci. Remote Sens. Lett. 10(5), 1157–1161 (2013)

    Article  Google Scholar 

  14. Meta, A., Lorga, J.F.M., de Wit, J.J.M., Hoogeboom, P.: Motion compensation for a high resolution Ka-band airborne FM-CW SAR. In: IEEE European Radar Conference, pp. 1–4 (2005)

  15. Meta, A., Hoogeboom, P., Ligthart, L.P.: Signal processing for FMCW SAR. IEEE Trans. Geosci. Remote Sens. 45(11), 3519–3532 (2007)

    Article  Google Scholar 

  16. Carrara, W.G., Goodman, R.S., Majewski, R.M.: Spotlight Synthetic Aperture Radar Signal Processing Algorithms. Artech House, Boston, MA (1995)

    MATH  Google Scholar 

  17. Franceschetti, G., Lanari, R.: Synthetic Aperture Radar Processing. CRC Press, Boca Raton, FL (1999)

    Google Scholar 

  18. Zaugg, E.: Generalized Image Formation for Pulsed and LFM-CW Synthetic Aperture Radar, Ph.D. Thesis (2010)

  19. Cumming, G., Neo, Y.L., Wong, F.: Interpretations of the Omega-K algorithm and comparisons with other algorithms. Proc. IEEE Int. Geosci. Remote Sens. Symp. 3, 1455–1458 (2003)

    Google Scholar 

  20. Cumming, G., Wong, F.H.: Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation. Artech House, Norwood, MA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Saeedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedi, J., Alavi, S.M. Improved navigation-based motion compensation for LFMCW synthetic aperture radar imaging. SIViP 10, 405–412 (2016). https://doi.org/10.1007/s11760-015-0755-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0755-7

Keywords

Navigation