Skip to main content
Log in

Lossless colour image compression using RCT for bi-level BWCA

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A novel lossless colour image compression scheme based on a reversible colour transform (RCT) and Burrows–Wheeler compression algorithm (BWCA) is presented. The lossless transformation from RGB to YUV colour space provides highly correlated pixel intensities in the transformed image, thus aiding in higher compression. The proposed scheme uses a two-pass Burrows–Wheeler transform (BWT) for the individual source image colour planes to enhance grey-level homogeneity in the 2-D space. Compression efficiency is compared against various schemes including the JPEG 2000 lossless compression scheme and the previously developed kernel move-to-front transform-based BWCA (kernel BWCA). Validation is carried out via small- and large-size images. The proposed method using RCT with bi-level BWT results in better compression by taking advantage of the redundancy in the grey levels brought by the YUV colour space. For small-size images, it achieves 45 and 126 per cent more compression than the JPEG2000 lossless and kernel BWCA scheme, respectively. Among the different schemes compared, the proposed scheme achieves overall best performance and is well suited to small- and large-size image data compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ouni, T., Lassoued, A., Abid, M.: Lossless image compression using gradient based space filling curves (G-SFC). Signal Image Video Process. 9(2), 277–293 (2015)

    Article  Google Scholar 

  2. Anusuya, V., Raghavan, V.S., Kavitha, G.: Lossless compression on MRI images using SWT. J. Digit. Imaging 27(5), 594–600 (2014)

    Article  Google Scholar 

  3. Srinivasan, K., Dauwels, J., Reddy, M.R.: A two-dimensional approach for lossless EEG compression. Biomed. Signal Process. Control 6(4), 387–394 (2011)

    Article  Google Scholar 

  4. Mao, Q., et al.: Efficient and lossless compression of raster maps. Signal Image Video Process. 9(1), 133–145 (2015)

    Article  Google Scholar 

  5. Sun, W., et al.: High performance reversible data hiding for block truncation coding compressed images. Signal Image Video Process. 7(2), 297–306 (2013)

    Article  Google Scholar 

  6. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, vol. 2. Prentice-Hall Inc, New Jersey (2002)

    Google Scholar 

  7. Skodras, A., Christopoulos, C., Ebrahimi, T.: The Jpeg 2000 still image compression standard. IEEE Signal Process. Mag. 18(5), 36–58 (2001)

    Article  Google Scholar 

  8. Ponomarenko, N.N., et al.: Adaptive visually lossless JPEG-based color image compression. Signal Image Video Process. 7(3), 437–452 (2013)

    Article  Google Scholar 

  9. Zamora, G., Mitra, S.: Lossless coding of color images using color space transformations. In: 11th IEEE Symposium on Computer-Based Medical Systems, Proceedings, pp. 13–18, IEEE Computer Society, Los Alamitos (1998)

  10. Colantoni, P., Al.: Color space transformations, (2004)

  11. de Queiroz, R.L.: On independent color space transformations for the compression of CMYK images. IEEE Trans. Image Process. 8(10), 1446–1451 (1999)

    Article  Google Scholar 

  12. Chou, C.H., Liu, K.C.: Colour image compression based on the measure of just noticeable colour difference. IET Image Process. 2(6), 304–322 (2008)

  13. Tiwari, A.K., Kumar, R.V.R.: A minimum entropy based switched adaptive predictor for lossless compression of images. Signal Image Video Process. 3(4), 307–318 (2009)

    Article  MATH  Google Scholar 

  14. Gormish, M.J., et al.: Lossless and nearly lossless compression for high quality images. In: Algazi, V.R., Ono, S., Tescher, A.G. (eds.) SPIE: Very High Resolution and Quality Imaging II, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), pp. 62–70. Spie-Int Soc Optical Engineering, Bellingham (1997)

    Chapter  Google Scholar 

  15. Przelaskowski, A.: Effective integer-to-integer transforms for JPEG2000 coder. In: Laine, A.F., Unser, M.A., Aldroubi, A. (eds.) Wavelets: Applications in Signal and Image Processing IX, Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie), pp. 299–310. Spie-Int Soc Optical Engineering, Bellingham (2001)

    Google Scholar 

  16. Rabbani, M., Joshi, R.: An overview of the jpeg 2000 still image compression standard. Signal Process. Image Commun. 17(1), 3–48 (2002)

    Article  Google Scholar 

  17. Chen, Y., Hao, P.: Integer reversible transformation to make JPEG lossless. In: 2004 7th International Conference on Signal Processing Proceedings, vol 1–3, pp. 835–838, Publishing House Electronics Industry, Beijing (2004)

  18. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. SRC Research Report 124. Digital Systems Research Center, Palo Alto (1994)

  19. Bell, T.C., Cleary, J.G., Witten, I.H.: Text Compression. Prentice-Hall, New Jersey (1990)

    Google Scholar 

  20. Abel, J.: Incremental frequency count—a post BWT-stage for the Burrows–Wheeler compression algorithm. Softw. Pract. Exp. 37(3), 247–265 (2007)

    Article  Google Scholar 

  21. Abel, J.: Post BWT stages of the Burrows–Wheeler compression algorithm. Softw. Pract. Exp. 40(9), 751–777 (2010)

    Google Scholar 

  22. Deorowicz, S.: Improvements to Burrows–Wheeler compression algorithm. Softw. Pract. Exp. 30(13), 1465–1483 (2000)

    Article  MATH  Google Scholar 

  23. Abel, J.: Improvements to the Burrows–Wheeler compression algorithm: After BWT stages. ACM Trans. Comput. Syst. (2003). http://www.juergen-abel.info/files/preprints/preprint_after_bwt_stages.pdf

  24. Manzini, G.: An analysis of the Burrows–Wheeler transform. J. Acm 48(3), 407–430 (2001)

    Article  MathSciNet  Google Scholar 

  25. Asif Ali, M., et al.: Lossless image compression using kernel based global structure transform (GST). In: 6th international conference on emerging technologies (ICET), pp. 170–174 (2010)

  26. Khan, A., et al.: Lossless image compression: improvement to kernel global structure transform (KGST) based Burrows–Wheeler compression algorithm (BWCA). In: 2nd international conference on machine vision (ICMV) (2010)

  27. Balkenhol, B., Kurtz, S.: Universal data compression based on the Burrows–Wheeler transformation: theory and practice. IEEE Trans. Comput. 49(10), 1043–1053 (2000)

    Article  MathSciNet  Google Scholar 

  28. Schindler, M.: A fast block-sorting algorithm for lossless data compression. In: Proceedings of the IEEE data compression conference (1997)

  29. Arnavut, Z., Magliveras, A.S.: Lexical permutation sorting algorithm. Comput. J. 40(5), 292–295 (1997)

  30. Deorowicz, S.: Second step algorithms in the Burrows–Wheeler compression algorithm. Softw. Pract. Exp. 32(2), 99–111 (2002)

    Article  MATH  Google Scholar 

  31. Balkenhol, B., Shtarkov, Y.M.: One attempt of a compression algorithm using the BWT. (1999)

  32. Fenwick, P.: Block sorting text compression-final report. Technical Reports 130. University of Auckland, New Zealand, Department of Computer Science (1996)

  33. Squeeze Chart, Lossless Data Compression Benchmark. http://www.squeezechart.com/bitmap.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aftab Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Khan, A. Lossless colour image compression using RCT for bi-level BWCA. SIViP 10, 601–607 (2016). https://doi.org/10.1007/s11760-015-0783-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0783-3

Keywords

Navigation