Skip to main content
Log in

Backward and forward linear prediction applied to ultraspectral image processing

Effects on rate–distortion

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Atmospheric infrared sounder images are ultraspectral data cubes that comprise over two thousand spectral bands accounting for well over 25 megapixels of information. In this paper, we focus on the analysis of backward and forward linear prediction (LP) applied in the context of ultraspectral image compression. We start by introducing a detailed analysis of the differences and similarities between them and proceed to present a mathematical model that integrates not only error signal but also LP coefficient encoding. In addition, to overcome some of the limitations of backward LP, we present a hybrid LP scheme where both, backward and forward LP, are put into consideration by dynamically interleaving them in order to minimize the mean square error of the error signal. The model is further extended to compare all three techniques, and both experimental and theoretical samples are contrasted to verify that hybrid LP provides most efficient compression method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cahill, P.T., Vullo, T., Hu, J.H., Wang, Y., Deck, M.D.F., Manzo, R., Weingarten, K., Markisz, J.A.: Radiologist evaluation of a multispectral image compression algorithm for magnetic resonance images. J. Digital Imaging 3, 126–136 (1998)

    Article  Google Scholar 

  2. Chen, H., Wong, W., Ko, C.C.: A comparison of pitch prediction algorithms in forward and backward adaptive celp systems. In: Singapore ICCS/ISITA ’92. ‘Communications on the Move’, pp. 821–825, vol. 2 (1992). doi:10.1109/ICCS.1992.255148

  3. Chen, H., Wong, W., Ko, C.C.: Comparison of pitch prediction and adaptation algorithms in forward and backward adaptive celp systems. In: Communications, Speech and Vision, IEE Proceedings I , vol. 140, no. 4, pp. 240–245 (1993)

  4. Chu, W.C.: Speech Coding Algorithms: Foundation and Evolution of Standardized Coders, 1st edn. Wiley, New York, NY (2003)

    Book  MATH  Google Scholar 

  5. van Dorp, J., Kotz, S.: Generalized trapezoidal distributions. Metrika 58(1), 85–97 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Herrero, R., Ingle, V.: Lossy compression of ultraspectral images: integrating preprocessing and compression stages. Signal Image Video Process., 1–12 (2012). doi:10.1007/s11760-012-0397-y

  7. Herrero, R., Ingle, V.: Space-filling curves applied to compression of ultraspectral images. Signal Image Video Process., 1–9 (2013). doi:10.1007/s11760-013-0565-8

  8. Herrero, R., Ingle, V.: Band ordering in compression of ultraspectral images. Signal Image Video Process. 8(2), 255–265 (2014). doi:10.1007/s11760-013-0541-3

    Article  Google Scholar 

  9. Hu, J.H., Wang, Y., Cahill, P.: Multispectral code excited linear prediction coding and its application in magnetic resonance images. IEEE Trans. Image Process. 6(11), 1555–1566 (1997). doi:10.1109/83.641415

    Article  Google Scholar 

  10. Kabir, H., Alam, S., Matin, M., Chowdhury, I.: A loss-less compression technique for high quality speech signals and its implementation with mpeg-4 als for better compression. In: 2010 IEEE International Conference on Information Theory and Information Security (ICITIS), pp. 781–785 (2010). doi:10.1109/ICITIS.2010.5689685

  11. Magli, E.: Multiband lossless compression of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 47(4), 1168–1178 (2009). doi:10.1109/TGRS.2008.2009316

    Article  Google Scholar 

  12. Memon, N., Sayood, K., Magliveras, S.: Lossless compression of multispectral image data. IEEE Trans. Geosci. Remote Sens. 32(2), 282–289 (1994). doi:10.1109/36.295043

    Article  Google Scholar 

  13. Nikolic, J., Peric, Z., Aleksic, D.: Optimization of \(\mu \)-law companding quantizer for laplacian source using mullers method. Przeglad Elektrotechniczny 3a, 206–208 (2013)

  14. Pickering, M., Ryan, M.: An architecture for the compression of hyperspectral imagery. In: Hyperspectral Data Compression, pp. 1–34 (2006)

  15. Shuhong, W., Gang, Z.: 8 kbit/s ld-acelp speech coding with backward pitch detection. In: Asia-Pacific Conference on Information Processing, vol. 2, pp. 434–437 (2009). doi:10.1109/APCIP.2009.243

  16. Zhang, J., Liu, G.: An efficient reordering prediction-based lossless compression algorithm for hyperspectral images. IEEE Geosci. Remote Sens. Lett. 4(2), 283–287 (2007). doi:10.1109/LGRS.2007.890546

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Herrero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrero, R., Ingle, V.K. Backward and forward linear prediction applied to ultraspectral image processing. SIViP 10, 639–646 (2016). https://doi.org/10.1007/s11760-015-0788-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0788-y

Keywords

Navigation