Skip to main content
Log in

Compressive sensing applied to radar systems: an overview

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Modern radar systems tend to utilize high bandwidth, which requires high sampling rate, and in many cases, these systems involve phased array configurations with a large number of transmit–receive elements. In contrast, the ultimate goal of a radar system is often to estimate only a limited number of target parameters. Thus, there is a pursuit to find better means to perform the radar signal acquisition as well as processing with much reduced amount of data and power requirement. Recently, there has been a great interest to consider compressive sensing (CS) for radar system design; CS is a novel technique which offers the framework for sparse signal detection and estimation for optimized data handling. In radars, CS enables the achievement of better range-Doppler resolution in comparison with the traditional techniques. However, CS requires the selection of suitable (sparse) signal model, the design of measurement system as well as the implementation of appropriate signal recovery method. This work attempts to present an overview of these CS aspects, particularly when CS is applied in monostatic pulse-Doppler and MIMO type of radars. Some of the associated challenges, e.g., grid mismatch and detector design issues, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Richards, M.A., Scheer, J., Holm, W.A.: Principles of Modern Radar: Basic Principles. SciTech Pub., New York (2010)

    Google Scholar 

  2. Skolnik, M.I.: Introduction to Radar. McGraw-Hill, New York (2002)

    Google Scholar 

  3. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  4. Candes, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl. 23, 969 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Herman, M., Strohmer, T.: High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)

    Article  MathSciNet  Google Scholar 

  7. Candès, E., Wakin, M.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  8. Baraniuk, R.: Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  9. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  10. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Needell, D., Tropp, J.A.: Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Needell, D., Vershynin, R.: Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal. Process. 4(2), 310–316 (2010)

    Article  Google Scholar 

  14. Ji, S., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Trans. Signal Process. 56(6), 2346–2356 (2008)

    Article  MathSciNet  Google Scholar 

  15. Pope, G.: Compressive Sensing: A Summary of Reconstruction Algorithms. Master’s thesis, ETH, Swiss Federal Institute of Technology Zurich, Department of Computer Science (2009)

  16. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

  17. Petropulu, A.P., Yu, Y., Huang, J.: On exploring sparsity in widely separated mimo radar. In: 45th Asilomar Conference on Signals, Systems and Computers IEEE, pp. 1496–1500 (2011)

  18. Yap, H.L., Pribic, R.: False alarms in multi-target radar detection within a sparsity framework. In: International Radar Conference IEEE, pp. 1–6 (2014)

  19. Baransky, E., Itzhak, G., Shmuel, I., Wagner, N., Shoshan, E., Eldar, Y.: A sub-nyquist radar prototype: hardware and algorithms. IEEE Trans. Aerosp. Electron. Syst. 2, 809–822 (2014)

    Article  Google Scholar 

  20. Gogineni, S., Nehorai, A.: Sparsity-based mimo noise radar for multiple target estimation. In: IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 33–36 (2012)

  21. Godrich, H., Haimovich, A., Blum, R.: Target localization accuracy gain in mimo radar-based systems. IEEE Trans. Inf. Theory 56(6), 2783–2803 (2010)

    Article  MathSciNet  Google Scholar 

  22. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  23. Huang, T., Liu, Y., Meng, H., Wang, X.: Cognitive random stepped frequency radar with sparse recovery. IEEE Trans. Aerosp. Electron. Syst. 50, 858–870 (2014)

    Article  Google Scholar 

  24. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MATH  Google Scholar 

  26. Donoho, D.L., Maleki, A., Montanari, A.: Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. 106(45), 18 914–18 919 (2009)

    Article  Google Scholar 

  27. Anitori, L., Maleki, A., Otten, M., Baraniuk, R.G., Hoogeboom, P.: Design and analysis of compressed sensing radar detectors. IEEE Trans. Signal Process. 61(4), 813–827 (2013)

    Article  MathSciNet  Google Scholar 

  28. Ji, S., Dunson, D., Carin, L.: Multitask compressive sensing. IEEE Trans. Signal Process. 57(1), 92–106 (2009)

    Article  MathSciNet  Google Scholar 

  29. Schniter, P., Potter, L.C., Ziniel, J.: Fast bayesian matching pursuit. In: Information Theory and Applications Workshop IEEE, pp. 326–333 (2008)

  30. Shen, F., Zhao, G., Shi, G., Jin, D.: Compressed sensing based ultra-wideband radar system. In: IEEE CIE International Conference on Radar, vol. 2, pp. 1850–1853 (2011)

  31. Bellasi, D.E., Bettini, L., Benkeser, C., Burger, T., Huang, Q., Studer, C.: Vlsi design of a monolithic compressive-sensing wideband analog-to-information converter. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(4), 552–565 (2013)

    Article  Google Scholar 

  32. Bar-Ilan, O., Eldar, Y.C.: Sub-nyquist radar via doppler focusing. IEEE Trans. Signal Process. 62, 1796–1811 (2012)

    Article  MathSciNet  Google Scholar 

  33. Potter, L., Ertin, E., Parker, J., Cetin, M.: Sparsity and compressed sensing in radar imaging. Proc. IEEE 98(6), 1006–1020 (2010)

    Article  Google Scholar 

  34. Grant, M., Boyd. S.: Cvx: Matlab Software for Disciplined Convex Programming, version 2.0 beta. (2013, September) [Online]. Available: http://cvxr.com/cvx

  35. Teke, O., Gurbuz, A.C., Arikan, O.: A robust compressive sensing based technique for reconstruction of sparse radar scenes. Digit. Signal Process. 27, 23–32 (2014)

    Article  Google Scholar 

  36. Ender, J.: On compressive sensing applied to radar. Signal Process. 90(5), 1402–1414 (2010)

    Article  MATH  Google Scholar 

  37. Pfander, G.E., Rauhut, H.: Sparsity in time–frequency representations. J. Fourier Anal. Appl. 16(2), 233–260 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Gröchenig, K.: Foundations of Time–Frequency Analysis. Springer, New York (2001)

    Book  MATH  Google Scholar 

  39. Baraniuk, R., Steeghs, P.: Compressive radar imaging. In: IEEE Radar Conference, pp. 128–133 (2007)

  40. Shi, G., Lin, J., Chen, X., Qi, F., Liu, D., Zhang, L.: Uwb echo signal detection with ultra-low rate sampling based on compressed sensing. IEEE Trans. Circuits Syst. II Express Briefs 55(4), 379–383 (2008)

    Article  Google Scholar 

  41. Ertin, E., Potter, L., Moses, R.: Sparse target recovery performance of multi-frequency chirp waveforms. In: 19th European Signal Processing Conference (EUSIPCO), pp. 446–450 (2011)

  42. Whitelonis, N., Ling, H.: Radar signature analysis using a joint time–frequency distribution based on compressed sensing. IEEE Trans. Antennas Propag. 62(2), 755–763 (2014)

    Article  Google Scholar 

  43. Smith, G., Diethe, T., Hussain, Z., Shawe-Taylor, J., Hardoon, D.: Compressed sampling for pulse doppler radar. In: IEEE Radar Conference, pp. 887–892 (2010)

  44. Rilling, G., Davies, M., Mulgrew, B.: Compressed sensing based compression of sar raw data. In: SPARS’09-Signal Processing with Adaptive Sparse Structured Representations (2009)

  45. Song, X., Zhou, S., Willett, P.: The role of the ambiguity function in compressed sensing radar. In: 35th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2758–2761 (2010)

  46. Zegov, L., Pribic, R., Leus, G.: Optimal waveforms for compressive sensing radar. In: 21st IEEE European Signal Processing Conference (EUSIPCO), pp. 1–5 (2013)

  47. Chi, Y., Calderbank, R., Pezeshki, A.: Golay complementary waveforms for sparse delay-doppler radar imaging. In: 3rd IEEE-CAMSAP, pp. 177–180 (2009)

  48. Stoica, P., He, H., Li, J.: New algorithms for designing unimodular sequences with good correlation properties. IEEE Trans. Signal Process. 57(4), 1415–1425 (2009)

    Article  MathSciNet  Google Scholar 

  49. Wehner, D.R.: High Resolution Radar, vol. 1. Artech House Inc., Norwood (1987)

    Google Scholar 

  50. Shah, S., Yu, Y., Petropulu, A.: Step-frequency radar with compressive sampling (sfr-cs). In: 35th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1686–1689 (2010)

  51. Xu, L., Liang, Q.: Compressive sensing in radar sensor networks using pulse compression waveforms. In: IEE ICC Ad-hoc and sensor Networking Symposium IEEE, pp. 794–798 (2012)

  52. Zhiping, Y., Hao, X., Weidong, C.: A new hybrid-frequency radar system based on compressed sensing theory. In: International Conference on Microwave and Millimeter Wave Technology (ICMMT) IEEE, pp. 1731–1734 (2010)

  53. Huang, T., Liu, Y., Meng, H., Wang, X.: Randomized step frequency radar with adaptive compressed sensing. In: IEEE Radar Conference IEEE, pp. 411–414 (2011)

  54. Anitori, L., Hoogeboom, P., LeChevalier, F., Otten, M.: Compressive sensing for high resolution profiles with enhanced doppler performance. In: 9th IEEE European Radar Conference (EuRAD), pp. 107–110 (2012)

  55. Gurbuz, A., Cevher, V., Mcclellan, J.: Bearing estimation via spatial sparsity using compressive sensing. IEEE Trans. Aerosp. Electron. Syst. 48(2), 1358–1369 (2012)

    Article  Google Scholar 

  56. Wei, W., Yipeng, D., Xin, X., Wenpeng, W., Qunying, Z., Guangyou, F.: The applying of compressed sensing in m-sequence uwb radar. In: First IEEE IC-IMCCC, pp. 708–711 (2011)

  57. Lyubomir Zegovy, G.L., Pribic, Radmila: optimal waveforms for compressive sensing radar. In: 21st European Signal Processing Conference(EUSIPCO) (2013)

  58. Krichene, H., Pekala, M., Sharp, M., Lauritzen, K., Lucarelli, D., Wang, I.: Compressive sensing and stretch processing. In: IEEE Radar Conference, pp. 362–367 (2011)

  59. Kyriakides, I.: Ambiguity functions of compressively sensed and processed radar waveforms. In: 36th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4256–4259 (2011)

  60. Sarkas, I.: Step Frequency Radar using Compressed Sensing. Department of Mathematics of the University of Toronto. Tech, Rep. (2010)

  61. Gandhi, P.P., Kassam, S.A.: Analysis of cfar processors in homogeneous background. IEEE Trans. Aerosp. Electron. Syst. 24(4), 427–445 (1988)

    Article  Google Scholar 

  62. Anitori, L., Otten, M., Hoogeboom, P.: Detection performance of compressive sensing applied to radar. In: IEEE Radar Conference, pp. 200–205 (2011)

  63. Maleki, A., Anitori, L., Yang, Z., Baraniuk, R.: Asymptotic analysis of complex lasso via complex approximate message passing (camp). IEEE Trans. Inf. Theory 59(7), 4290–4308 (2013)

    Article  MathSciNet  Google Scholar 

  64. Li, J., Stoica, P.: Mimo radar with colocated antennas. IEEE Signal Process. Mag. 24(5), 106–114 (2007)

    Article  Google Scholar 

  65. Haimovich, A., Blum, R., Cimini, L.: Mimo radar with widely separated antennas. IEEE Signal Process. Mag. 25(1), 116–129 (2008)

    Article  Google Scholar 

  66. Yu, Y., Petropulu, A., Poor, H.: Compressive sensing for mimo radar. In: 34th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3017–3020 (2009)

  67. Zhu, F., Zhang, Q., Lei, Q., Luo, Y.: Reconstruction of moving target’s HRRP using sparse frequency-stepped chirp signal. IEEE Sens. J. 11(10), 2327–2334 (2011)

    Article  Google Scholar 

  68. Zhu, F., Zhang, Q., Xiang, Y., Feng, Y.: Compressive sensing in isar spectrogram data transmission. In: 2nd IEEE Asian-Pacific Conference on Synthetic Aperture Radar (APSAR), pp. 89–92 (2009)

  69. Strohmer, T., Wang, H.: Accurate imaging of moving targets via random sensor arrays and kerdock codes. Inverse Probl. 29(8), 085001 (2013)

    Article  MathSciNet  Google Scholar 

  70. Hyder, M., Mahata, K.: A joint sparse signal representation perspective for target detection using bistatic mimo radar system. In: 17th IEEE International Conference on Digital Signal Processing (DSP), pp. 1–5 (2011)

  71. Yu, T., Gong, Z., De, B.: Joint sparse modeling for target parameter estimation in distributed mimo radar. IET International Radar Conference (2013)

  72. Chen, C., Vaidyanathan, P.: Compressed sensing in mimo radar. In: 42nd IEEE Asilomar Conference on Signals, Systems and Computers, pp. 41–44 (2008)

  73. Strohmer, T., Friedlander, B.: Analysis of sparse mimo radar. Appl. Comput. Harmon. Anal. 37(3), 361–388 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  74. Friedlander, B.: Waveform design for mimo radars. IEEE Trans. Aerosp. Electron. Syst. 43(3), 1227–1238 (2007)

    Article  Google Scholar 

  75. Gogineni, S., Nehorai, A.: Target estimation using sparse modeling for distributed mimo radar. IEEE Trans. Signal Process. 59(11), 5315–5325 (2011)

    Article  MathSciNet  Google Scholar 

  76. Yu, Y., Sun, S., Madan, R.N., Petropulu, A.: Power allocation and waveform design for the compressive sensing based mimo radar. IEEE Trans. Aerosp. Electron. Syst. 50(2), 898–909 (2014)

    Article  Google Scholar 

  77. Stoica, P., Li, J., Xue, M.: Transmit codes and receive filters for radar. IEEE Signal Process. Mag. 25(6), 94–109 (2008)

    Article  Google Scholar 

  78. Hyder, M., Mahata, K.: An improved smoothed l0 approximation algorithm for sparse representation. IEEE Trans. Signal Process. 58(4), 2194–2205 (2010)

    Article  MathSciNet  Google Scholar 

  79. Tian, Z., Blasch, E.: Compressed sensing for mimo radar: a stochastic perspective. In: IEEE Statistical Signal Processing Workshop (SSP), pp. 548–551 (2012)

  80. Hadi, M., AlShebeili, S., El-Samie, F., Jamil, K.: Compressive sensing for improved mimo radar performance: a review. In: International Conference on Information and Communication Technology Research (ICTRC), Dubai, UAE, pp. 270–273 (2015)

  81. Yu, Y., Petropulu, A., Poor, H.: Mimo radar using compressive sampling. IEEE J. Sel. Top. Signal Process. 4(1), 146–163 (2010)

    Article  Google Scholar 

  82. He, X., Liu, C., Liu, B., Wang, D.: Sparse frequency diverse mimo radar imaging for off-grid target based on adaptive iterative map. Remote Sens. 5(2), 631–647 (2013)

    Article  Google Scholar 

  83. Minner, M.: On-grid mimo radar via compressive sensing. In: 2nd International Workshop on Compressed Sensing applied to Radar (CoSeRa), Bonn (2013)

  84. Gogineni, S., Nehorai, A.: Adaptive waveform design for colocated mimo radar using sparse modeling. In: 4th IEEE-CAMSAP, pp. 13–16 (2011)

  85. Fannjiang, A., Tseng, H.-C.: Compressive radar with off-grid targets: a perturbation approach. Inverse Probl. 29(5), 054008 (2013)

    Article  Google Scholar 

  86. Chi, Y., Scharf, L., Pezeshki, A., Calderbank, A.: Sensitivity to basis mismatch in compressed sensing. IEEE Trans. Signal Process. 59(5), 2182–2195 (2011)

    Article  MathSciNet  Google Scholar 

  87. Chae, D.H., Sadeghi, P., Kennedy, R.A.: Effects of basis-mismatch in compressive sampling of continuous sinusoidal signals. In: 2nd IEEE International Conference on Future Computer and Communication (ICFCC), vol. 2, pp. 739–743 (2010)

  88. Yang, Z., Zhang, C., Xie, L.: Robustly stable signal recovery in compressed sensing with structured matrix perturbation. IEEE Trans. Signal Process. 60(9), 4658–4671 (2012)

    Article  MathSciNet  Google Scholar 

  89. Ekanadham, C., Tranchina, D., Simoncelli, E.P.: Recovery of sparse translation-invariant signals with continuous basis pursuit. IEEE Trans. Signal Process. 59(10), 4735–4744 (2011)

    Article  MathSciNet  Google Scholar 

  90. Zhu, H., Leus, G., Giannakis, G.B.: Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Trans. Signal Process. 59(5), 2002–2016 (2011)

    Article  MathSciNet  Google Scholar 

  91. Huang, T., Liu, Y., Meng, H., Wang, X.: Adaptive matching pursuit with constrained total least squares. EURASIP J. Adv. Signal Process. 2012(1), 1–12 (2012)

    Article  Google Scholar 

  92. Zhang, B., Hong, W., Wu, Y.: Sparse microwave imaging: principles and applications. Sci. China Inf. Sci. 55(8), 1722–1754 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  93. Massa, A., Rocca, P., Oliveri, G.: Compressive sensing in electromagnetics-a review. IEEE Antennas Propag. Mag. 57(1), 224–238 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of KACST—Technology Innovation Center in RF and Photonics for the e-Society (RFTONICS), Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abdul Hadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadi, M.A., Alshebeili, S., Jamil, K. et al. Compressive sensing applied to radar systems: an overview. SIViP 9 (Suppl 1), 25–39 (2015). https://doi.org/10.1007/s11760-015-0824-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0824-y

Keywords

Navigation