Skip to main content
Log in

FIR system identification based on a nonparametric Bayesian model using the Indian buffet process

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a nonparametric Bayesian model combined with the Indian buffet process (IBP) for a finite impulse response (FIR) system. We develop an FIR system identification method that can simultaneously estimate the number of FIR taps and coefficients. In the proposed model, each FIR tap consists of a coefficient and a gain, and the gain is a binary value. An infinite-dimensional binary vector is composed of binary values, and we assume that this binary vector is generated by the IBP. To identify the FIR system, we specify the likelihood function and prior distributions of the parameters and derive their posterior distributions. We can simultaneously estimate the number of FIR taps and coefficients by sampling from posterior distributions using the Gibbs sampler. Our simulations demonstrate that although the number of FIR taps is unknown, the identification performance of the proposed method in a high signal-to-noise ratio environment is similar to or better than that of the conventional least square solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goto, M.: A real-time music–scene–description system: predominant-F0 estimation for detecting melody and bass lines in real-world audio signals. Speech Commun. 43(4), 311–329 (2004)

    Article  Google Scholar 

  2. Kameoka, H., Nishimoto, T., Sagayama, S.: A multipitch analyzer based on harmonic temporal structured clustering. IEEE Trans. Audio Speech Lang. Process. 15(3), 982–994 (2007)

    Article  Google Scholar 

  3. Yoshii, K., Goto, M.: A nonparametric Bayesian multipitch analyzer based on Infinite latent harmonic allocation. IEEE Trans. Audio Speech Lang. Process. 20(3), 717–730 (2012)

    Article  Google Scholar 

  4. Rasmussen, C.E.: The infinite Gaussian mixture model. In: Proceedings of 1999 Annual Conference on Neural Information Processing Systems (NIPS), Colorado, November 29–December 4, pp. 554–560 (1999)

  5. Hjort, N.L.: Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Stat. 18(3), 1259–1294 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ghahramani, Z., Griffiths, T.L., Sollich, P.: Bayesian nonparametric latent feature models. In: Proceedings of 2006 8th World Meeting on Bayesian Statistics, North Carolina, June 1–6, pp. 1-19 (2006)

  7. Griffiths, T.L., Ghahramani, Z.: Infinite latent feature models and the Indian buffet process. In: Proceedings of 2005 Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, December 5–8, pp. 475–482 (2005)

  8. Otsuka, T., Ishiguro, K., Sawada, H., Okuno, H.G.: Bayesian nonparametrics for microphone array processing. IEEE Trans. Audio Speech Lang. Process. 22(2), 493–504 (2014)

    Article  Google Scholar 

  9. Kameoka, H., Sato, M., Ono, T., Ono, N., Sagayama, S.: Bayesian nonparametric approach to blind separation of infinitely many sparse sources. IEICE Transactions on Fundamentals, Vol. E96-A, No. 10, October, pp. 1928–1937 (2013)

  10. Yoshii, K., Tomioka, R., Mochihashi, D., Goto, M.: Infinite positive semidefinite tensor factorization for source separation of mixture signals. In: Proceedings of 30th International Conference on Machine Learning (ICML), Atlandta, June 16–21, pp. 576–584 (2013)

  11. Gershman, S.J., Blei, D.M.: A tutorial on Bayesian nonparametric models. J. Math. Psychol. 56(1), 1–12 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1(2), 209–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Thibaux R., Jordan, M.I.: Hierarchical beta processes and the Indian buffet process. In: Proceedings of 2007 International Conference on Artificial Intelligence and Statistics (AISTATS), Puerto Rico, March 21–24, pp. 564–571 (2007)

  14. Paisley, J., Carin, L.: Nonparametric factor analysis with beta process priors. In: Proceedings of 26th International Conference on Machine Learning (ICML), Montreal, June 14–18, pp. 777–784 (2009)

  15. Zhou, M., Chen, H., Paisley, J., Ren, L., Lin, L., Xing, Z., Dunson, D., Sapiro, G., Carin, L.: Hierarchical beta processes and the Indian buffet process. IEEE Trans. Image Process. 21(1), 130–144 (2012)

    Article  MathSciNet  Google Scholar 

  16. Wang, Y., Carin, L.: Levy measure decompositions for the beta and gamma processes. In: Proceedings of 2012 International Conference on Machine Learning (ICML), New York, June 26–July 1, pp. 73–80 (2012)

  17. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gustafsson, F.: Adaptive Filtering and Change Detection. Wiley, New York (2000)

    Google Scholar 

  19. Widrow, B., Hoff, M.E.: Adaptive switching circuits. In: Convention Record IRE Western Electronic Show and Convention (WESCON), August, pp. 96–104 (1960)

  20. Lin, Y., Lee, D.D.: Bayesian \(L_1\)-norm sparse learning. In: Proceedings of 2006 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toulouse, May 14–19, pp. 605–608 (2006)

  21. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, J.S.: The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. J. Am. Stat. Assoc. 89(427), 958–966 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Tanji.

Appendices

Appendix 1: Probability distributions used in this paper

We describe specification of the probability distributions used in this paper. For a random variable z that can be zero or one, the Bernoulli distribution is defined for \(q\in [0,1]\) as

$$\begin{aligned} \mathrm {Bernoulli}(z|q)=q^z(1-q)^{1-z}. \end{aligned}$$
(30)

The beta and gamma distribution of scalar random variable x are

$$\begin{aligned}&\mathrm {Beta}(x|\,\beta ,\gamma )=\frac{{\varGamma }(\beta +\gamma )}{{\varGamma }(\beta ){\varGamma }(\gamma )}x^{\,\beta -1}(1-x)^{\gamma -1}\;(0\le x\le 1), \end{aligned}$$
(31)
$$\begin{aligned}&{\mathcal {G}}(x|\eta ,b)=\frac{b^\eta }{{\varGamma }(\eta )}x^{\eta -1}e^{-bx}\;(0\le x), \end{aligned}$$
(32)

where \(\eta ,b,\beta ,\gamma >0\). The Gaussian distribution of a d-dimensional random variable \(\mathbf {x}\in {\mathbb {R}}^d\) is

$$\begin{aligned} {\mathcal {N}}(\mathbf {x}|\mathbf {\mu },\mathbf {\Sigma })= (2\pi )^{-\frac{d}{2}}\Vert \mathbf {\Sigma }\Vert ^{-\frac{1}{2}} \exp \left( -\frac{1}{2}(\mathbf {x}-\mathbf {\mu })^\top \mathbf {\Sigma }^{-1}(\mathbf {x}-\mathbf {\mu })\right) .\nonumber \\ \end{aligned}$$
(33)

Appendix 2: Derivation of the prior distribution of the infinite-dimensional binary vector

The prior distribution \(P_{\mathbf {z}}^\infty (\mathbf {z})\) is derived by integrating \(\alpha \) out from \(P_{\mathbf {z}|\alpha }^\infty (\mathbf {z}|\alpha )\) with \(p_\alpha (\alpha )\), that is,

$$\begin{aligned} P_{\mathbf {z}}^\infty (\mathbf {z})=\int _{(0,\infty )} P_{\mathbf {z}|\alpha }^\infty (\mathbf {z}|\alpha )p_\alpha (\alpha )d\alpha . \end{aligned}$$
(34)

Since \(p_\alpha (\alpha )\) is conjugate to \(P_{\mathbf {z}}^\infty (\mathbf {z})\), this integral is calculated using the constant term of the gamma distribution as (11).

Appendix 3: Derivation of the evidence

To obtain the evidence \(p_{\mathbf {d}|\mathbf {X},\mathbf {z}}(\mathbf {d}|\mathbf {X},\mathbf {z})\), we integrate \(\mathbf {w}_+\) and s out from (8) as

$$\begin{aligned}&p_{\mathbf {d}|\mathbf {X},\mathbf {z}}(\mathbf {d}|\mathbf {X},\mathbf {z})\nonumber \\&=\int _{[0,\infty )}\int _{{\mathbb {R}}^{K_1}} f(\mathbf {d}|\mathbf {X},\mathbf {w},s,\mathbf {z})p_{\mathbf {w}|s}(\mathbf {w}_+|s)p_s(s)d\mathbf {w}_+ds. \end{aligned}$$
(35)

Equation (20) is obtained by calculating this integral since \(p_{\mathbf {w},s}(\mathbf {w}_+,s)=p_{\mathbf {w}|s}(\mathbf {w}_+|s)p_s(s)\) is conjugate to \(f(\mathbf {d}|\mathbf {X},\mathbf {w},s,\mathbf {z})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanji, H., Tanaka, R., Murakami, T. et al. FIR system identification based on a nonparametric Bayesian model using the Indian buffet process. SIViP 10, 1105–1112 (2016). https://doi.org/10.1007/s11760-016-0865-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0865-x

Keywords

Navigation