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Abstract Image Quality Assessment (IQA) algorithms
evaluate the perceptual quality of an image using eval-

uation scores that assess the similarity or difference
between two images. We propose a new low level fea-
ture based IQA technique, which applies filter-bank de-

composition and center-surround methodology. Differ-
ing from existing methods, our model incorporates color
intensity adaptation and frequency scaling optimiza-
tion at each filter-bank level and spatial orientation to

extract and enhance perceptually significant features.
Our computational model exploits the concept of object
detection and encapsulates characteristics proposed in

other IQA algorithms in a unified architecture. We also
propose a systematic approach to review the evolution
of IQA algorithms using unbiased test datasets, instead

of looking at individual scores in isolation. Experimen-
tal results demonstrate the feasibility of our approach.

Keywords Low Level Feature Extraction · Perceptual
Quality · Color Adaptation · Image Quality Assessment
(IQA) · Center-Surround Frequency Scaling · Two-Tier

Normalization

1 Introduction

Affordable high quality imaging devices nowadays has
led to advanced processing techniques and algorithms
that make images easier to capture, store and transmit.

However, these processing operations frequently intro-
duce undesireable alterations to the original image that
may not be visually pleasing. Too much compression,
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loss of contrast and color blurring are a few examples of
such alterations. Quantitative and qualitative analysis

of the resulting perceptual impact, generally known as
image quality assessment (IQA), has been a research fo-
cus for decades. Robust image quality evaluation tech-

niques have a wide range of applications, which include
design and optimization along the image acquisition,
processing and transmission pipeline. We focus on the

factors causing degradation of image quality and adopt
the Full Reference IQA approach in our experiments.
Different IQA approaches can be found in the litera-
ture: explicit modeling of the HVS, use of structures

in images, use of hand-crafted features (e.g., SIFT and
HOG), or a combination of the above. In contrast, we
present a state-of-the-art object detection based frame-

work of convolutional neural networks, exploit the un-
derlying concept to simulate the complex behavior of
the Human Visual System (HVS), and apply the com-
puted image feature representation for comparison of

quality. The contributions of this paper include: (a) in-
troduction of a new low level feature based IQA, (b) in-
troduction of a new center-surround methodology tak-

ing visual saliency into consideration, (c) introduction
of a new frequency scaling to optimize the extracted fea-
tures, and (d) comparison with state-of-the-art meth-

ods to demonstrate better performance of our proposed
method.

2 Motivation and Proposed Architecture

Based on earlier studies [25], it is believed that struc-
tural similarity plays a major role in perceptual qual-

ity assessment. Additionally, there are findings ( [11]
and [30]) demonstrating that low level features can in-
fluence visual perception and can model how humans

assess image quality. Recent theories ( [16] and [27]) also
claim that the HVS in fact uses multiple strategies to
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detect differences in images. The first mechanism dom-
inates when the distortions are not easily visible. Here
the visual system seems to employ a detection based
strategy, that most of the IQA algorithms, e.g., [6], ap-

ply to explicitly model how the HVS detects quality.
The second mechanism becomes effective when the dis-
tortions are supra-threshold or visible. Here the qual-

ity is determined mostly by the perceptual ability to
recognize the image content. Visual saliency is another
research approach to study IQA. Zhang et al. claimed

that differences in visual salience maps can be used as
a predictor of visual quality [29]. Another study [17]
claims that SSIM can be further simplified by just con-
sidering gradient magnitude and choosing a better pool-

ing strategy. The fundamental theory however is still
based on the concept of structural similarity. An al-
ternative method that has been successful is IFS [4]

that tries to compute differences in terms of luminance
and features extracted using Independent Component
Analysis (ICA). ICA is also used to model the color
mechanism of the HVS. Luminance distortion is calcu-

lated separately and combined with the ICA outcome
to generate a final quality score.

We realized that all these theories can be accommo-
dated into a single low level feature based model. Thus,
we exploit an architecture that encapsulates the con-

cept of object detection [14], and explore a feature opti-
mization strategy to deliver a more efficient IQA frame-
work. Current systems often capture edge like struc-

tures as features using natural images in the training
set. The learnt filters are likely very similar to the Ga-
bor filters that can be used to model the HVS [5]. In
this type of model, high level features are generated

from the input image. The generated feature represen-
tations are used for the object detection process. There
are multiple processing layers, with each layer consist-

ing of a filter-bank stage, a non-linearity stage and a
feature pooling stage.

Instead of multiple layers, we only need one layer
in our framework for generating low level features from
the image. Our low level feature generation approach

based on a single-layer object detection architecture is
especially effective for IQA because of the following ad-
vantages: 1) the generated features capture structural
information [25] of the image, 2) our approach, with a

new frequency scaling technique, can explicitly model
the HVS and account for the first mechanism to detect
not easily visible distortions [16], 3) our approach cap-

tures the low level features that can be used for object
detection accounting for the second mechanism to de-
tect supra-threshold distortions [16], 4) the extracted
low level features can influence visual perception based

on earlier findings [11], 5) visual saliency is incorporated

in our framework by using our new center-surround pro-

cessing step.

3 Computational Model

Our model contains four major components: Filter-bank
decomposition, Feature distribution normalization, Spa-
tial frequency scaling and Neighborhood pooling. The
evaluation scores of two images can then be compared

to assess their perceptual similarity or difference.

Fig. 1 Outputs at various stages (a) The original image, (b)
Three filter outputs, (c) Results after blockwise normaliza-
tion, (d) Schematic representation of frequency scaling, (e)
Pooling, (f) Pictorial representation of the final feature.

3.1 Pre-processing and filter-bank decomposition

An image is first converted into the CIELab color space
generating the luma (L) and chroma (a and b) compo-
nents. We adopt the CIELab color space for its larger
gamut values to approximate human vision, exceeding

those supported by the RGB and CMYK models. Each
of the Lab components is then decomposed by a seven
level wavelet, mimicking the frequency characteristics of

the HVS [9]. We use BIOR 1.5 wavelets for this decom-
position (Fig. 1 (b)). The output of these wavelet filters
are represented by “feature maps.” Note that we use a

custom wavelet decomposition, rather than a trained
set of filter weights described in the original model [14],
the performance of which can be limited by the training
set. A custom approach better simulates HVS charac-

teristics like brightness induction and other frequency
dependent ones [19].

3.2 Two-tier feature distribution normalization

The saliency of an image is dictated by the viewer’s
perceptual power to discriminate between the center

and surround along with the relative distribution of fea-
tures in the target region [2]. Motivated by this “center-
surround” processing in biological vision, a two-tier nor-
malization process is incorporated in our model. We

perform patch-wise divisive normalization and subtrac-
tive normalization at each level of wavelet decompo-
sition (feature map). A feature map is divided into

patches of 13 x 13 with an overlap of 4 pixels between
patches. The 5 x 5 center region within the patch is
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then processed. We use the surround to simulate the
retinal eccentricity, beyond which the vision is blurred.
Earlier studies [19] showed that this patch definition
better simulates brightness induction of HVS.
3.2.1 Tier 1: Individual feature map normalization

A temporary subtractive normalization is first performed
by subtracting the mean of the coefficients as shown in

Eq. 1. Cs,o(i, j) denotes the feature map at level s and
orientation o of the wavelet decomposition for all pixels
(i, j) surrounding the current pixel in the 5 x 5 center
block, and the mean of the coefficients is: Cs,o(i, j).

vs,o(i, j) = Cs,o(i, j)− Cs,o(i, j) (1)

Let σvcenter
be the standard deviation of the feature

map values in a 5 x 5 neighborhood around the current

pixel (i, j) and σvsurrounding
be the standard deviation

of the feature map values in the corresponding 13 x 13
neighborhood. We calculate the normalization factor r

for the divisive normalization as:

r =

{ σvcenter

σvsurrounding
if σvsurrounding

6= 0

σvcenter
if σvsurrounding

= 0
(2)

Divisive normalization is essentially a decorrelation
performed by dividing each pixel vs,o(i, j) of the 5 x 5

neighborhood by r.

ys,o(i, j) =
vs,o(i, j)

r
(3)

The mean values are then added back to each fea-
ture map pixel ys,o(i, j). The temporary mean subtrac-
tion enhances only the variation in the visual informa-

tion, without altering the mean value of the feature
maps.

V ′
s,o(i, j) = ys,o(i, j) + Cs,o(i, j) (4)

3.2.2 Tier 2: Cross feature map normalization

After V ′
s,o(i, j) is computed for each feature map, the

mean value V ′
s,o across all feature maps is calculated.

A subtractive normalization using this average is then

performed across levels, i.e., level s ε (2, 7) and ori-
entation o. C ′

s,o are the feature map values after the
subtractive normalization.

C ′
s,o = V ′

s,o − V ′
s,o (5)

The approximation feature map, i.e., level 1 (coars-
est), is left unaltered in order to preserve the low fre-

quency components that might have been lost on the fi-
nal feature representation during the normalization and
scaling processes.

Using this center-surround processing operation, we
are able to simulate effects similar to lateral inhibition

in the HVS, thus enhancing the regions of the image
that have more variations. This has the added benefit
of enhancing the visually salient regions of the image;
e.g., global saliency computation in [13]. Salient regions

have higher values in the final representation (Fig. 2).

Fig. 2 (Left) Original image. (Right) Result of reconstruc-
tion of the coefficients after normalization. The red rectangle
(sky, far away buildings) denotes the region of low variation.
The blue rectangle (city buildings, waves on the sea) is the
region of high variation.

Liu and Heynderickx [18] improved the performance
over SSIM [25] by scaling with the saliency term, follow-

ing which they performed dissimilarity computation.
We achieve the same effect in our method implicitly,
by enhancing salient feature map values by our center-
surround processing, before calculating perceptual dis-

tance.

3.3 Spatial frequency scaling optimization

The normalization step described in the last section al-

lows us to capture the local features within each level
(feature map) of the image. However, the HVS has dif-
ferent sensitivities to various levels and orientation of

image edges. We observe that as the feature map detail
increases (from coarse to fine) across levels, the cor-
responding variance associated with the feature maps
decreases (Fig. 3). We examined the trends in thirty

images and they display this characteristic collectively
(Fig. 4). Feature maps at finer (higher) levels contain
more detail and have smaller standard deviations. Mo-

tivated by this observation, we introduce a new spatial
frequency scaling formulation to project the local fre-
quencies at different levels to a global space.

3.3.1 Feature map scaling

We control the projection using the standard deviation
of the feature map at each level and orientation, i.e.,
δ(s, o). We scale each of the feature maps by δ(s, o).

The frequency scaled coefficients (Cδ(x, y)) are:

Cδ(s,o) = δ(s, o) ∗ C ′
s,o (6)

where the scale factor is:

δ(s, o) = K2/σCs,o
+K1 (7)
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Fig. 3 Example images illustrate the general trend of
the coefficient variance associated with a feature map. It
decreases when moving across levels.

Fig. 4 The consolidated result from thirty images also
show that the variance coefficients in feature maps de-
crease when moving across levels.

where s is level of feature map; o orientation of the

filter associated with horizontal, vertical and diagonal
feature maps after wavelet decomposition; and σCs,o

the
standard deviation of the processed feature map at level

s and orientation o.

An optimization can be formulated by choosing the
appropriate values of K1 and K2. For illustration, we
plot the SSRC correlation scores in Fig. 5 using differ-

ent pairs of K1 and K2 values. More detail about the
correlation evaluation is presented in the results Sec-
tion. The plot is the average result collected from 800

images. In our experiments, we set K1 and K2 to 31
and 3 respectively, which produced the optimal results.
Coefficients of the frequency band and orientation that
have higher scaling value δ(s, o) have a greater value in

the final feature representation, corresponding to higher
sensitivity to the HVS.

3.3.2 Color adaptation

It is believed that sensitivity of the HVS to scene con-
tent is derived from various stimulus modalities, includ-
ing intensity, color, spatial and temporal (for dynamic

scene only) features [7]. This is consistent with what
we noticed from our datasets, where brightly colored
images display a different perceptual sensitivity com-

pared to the less vibrant images. To address this issue,
we assess the chroma component of an image. If the

Fig. 5 An optimization formulation can be obtained by
adjusting the values of K1 and K2.

Fig. 6 Colorful images (a),(b) and (c) are recognized by
Cr >= 0.25. Example images with Cr < 0.25 are shown
in (d),(e) and (f).

color ratio Cr > 0.25 (Eq. 8), we adaptively modify the
frequency scaling function of each frequency band by

(K2/σLs +K2/σCas,bs
+K1), where σCas and σCbs are

the standard deviations of the processed chroma fea-
ture maps at level s. K1 acts as a decorrelation term

for the color components of the image.

Cr =
n∑

s=1

σas + σbs
(σLs)

(8)

σLs denotes the standard deviation of the feature
map of the luminance component at level s. σCas,bs

is

the product of σas and σbs. The experimentally deter-
mined threshold of 0.25 was chosen to distinguish be-
tween colorful and normal images. A comparison of the

two categories of images is shown in Fig. 6.

3.4 Neighborhood pooling

Aggregating multiple low level features over a small
neighborhood can improve visual tasks [8]. In our model,

the pooling component takes an N ×M block in a pro-
cessed feature map, divides it into k × k blocks and
returns a single value equal to the maximum valued
coefficient in the block. Thus, we reduce the dimen-

sionality of the feature representation from N ×M to
N
k × M

k . We choose k as 3 for a window size of 3 x 3 and
select the maximum of the feature map values in the

block. The dimensionally reduced feature map Cf (s, o)
is computed as:
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Cf(s,o) = pooling(Cδ(s, o)) (9)

To create the final feature representation f for an
image, we apply concatenation on all the processed fea-

ture maps Cf(s,o).

F = concatenate(Cf(s,o)) (10)

This is done for every level s and orientation o of the
processed feature map Cf(s,o).

3.5 Perceptual distance measurement

In order to compute the perceptual similarity between
images, we use the L1 norm to compare the features

between images.

e =
N∑

i=1

|F1(i)− F2(i)| (11)

F1 and F2 are the two features generated from Images

1 and 2 respectively; N is the dimension of the features;
and e is the perceptual difference of Image 1 with ref-
erence to Image 2.

4 Experimental results

We tested our framework on four benchmark databases,
which contain a set of original images, the degraded
version and the perceptual quality scores, i.e, mean

opinion scores (MOS). We generated quality scores on
these images using our algorithm. For a fair compari-
son with other algorithms a logistic function was fitted

to get a non-linear mapping from the objective scores
to the subjective scores, following [22]. The compari-
son was based on Spearman rank order correlation co-
efficient (SRCC), Kendall rank-order correlation coeffi-

cient (KRCC) and Pearson linear correlation coefficient
(PLCC). A good IQA is characterized by higher values
for SRCC, KRCC and PLCC. Our implementation in

python had an average time per image pair (1 refer-
ence and 1 distorted) of 3.06s for the LIVE dataset.
This can be improved with C++ programming. Our
computational complexity is similar to that of SSIM;

one wavelet decomposition (FIR implementation O(N
log(N))) followed by a scaling in windows and then on
sub-band level. Since a wavelet transform is used, the

total number of pixels in all the sub-bands remains the
same as the original image, resulting in low overall com-
plexity.

4.1 Performance comparison and analysis

The strengths of our model can be attributed to the
local normalization and global scaling processes, which

have advantages over traditional methods. These op-

erations model the adaptation of the HVS by decor-
relating elements in the feature maps along the axis
of the wavelet basis, mimicking the processing in reti-

nal ganglion cells [1] [10]. The end result is similar to
PCA whitening (where the whitening operation makes
the different components of PCA uncorrelated and of

unit variance). The color intensity invariance feature
of our model improves the IQA results by adaptively
categorizing images at different brightness levels and
analysing accordingly.

To test the performance, we run our IQA algorithm
on the CSIQ [15], LIVE [12], TID2013 [20] and TID [21]

databases. A comparison among different IQA algo-
rithms on various datasets is given in [27], which we use
to evaluate our algorithm. The algorithms that we com-

pare with are VSI (Visual Saliency induced IQA) [29],
PSNR, SSIM (Strutural similarity based IQA) [25], MS-
SSIM (Multi scale SSIM) [26], VSNR [3], VIF (Visual
information fidelity based IQA) [24], FSIM (Feature

similarity index IQA) [30], IW-SSIM ( information
weighted SSIM) [23], IFS (Independent feature detector
IQA) [4], GSIM (Low level gradient similarity IQA) [17],

MAD (Most Apparent Distortion) [16], GMSD ( Ad-
vanced SSIM based on gradient magnitude IQA ) [28].
The results are shown in Table 1.

Over the years, many IQA algorithms have been in-
troduced. In order to evaluate the correlation between

subjective scores and objective scores generated by IQA
algorithms, statistical ranking methods like SRCC,
KRCC and PLCC are used. However, what is the sig-
nificant threshold in these rankings which truly reflects

noticeable visual quality difference in the assessed im-
ages? Is it 0.01 or 0.05? In the VSI paper, the authors
highlight the top two scores with a difference up to 0.05.

In Table 1, we bolded the scores which are within 0.03
(half way between 0.01 and 0.05) of the maximum value.
Our method has all bolded scores while others have
at least one score not bolded. For comparison, if the

threshold is reduced to 0.02, the proposed method only
has one not bolded score while IFS and VSI have 3 and
6 respectively. One obvious reason for our consistent

performance, as illustrated in Table 1, is that other al-
gorithms work particularly well in one test database at
the expense of another. For example, LIVE was released

around 2005 by the authors/co-authors of [SSIM, MS-
SSIM, VIF, FSIM, IW-SSIM and GMSD] (published in
2004, 2003, 2005, 20011, 2009 and 2013 respectively).
The techniques described in these papers, following the

concept of SSIM, all perform well in LIVE. Image struc-
tural content is an important factor for quality assess-
ment, but an algorithm designed for one type of struc-

ture, e.g. edges, may not be effective on another. Be-
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Table 1 Comparison of performance on datasets

Proposed VSI [29] PSNR SSIM [25] MS-SSIM [26] VSNR [3] VIF [24] FSIM [30] IW-SSIM [23] IFS [4] GSIM [17] MAD [16] GMSD [28]

SRCC 0.9430 0.9524 0.8756 0.9479 0.9513 0.9274 0.9636 0.9634 0.9567 0.9599 0.9554 0.9669 0.9600

LIVE KRCC 0.8200 0.8058 0.6865 0.7963 0.8045 0.7616 0.8282 0.8337 0.8175 0.8254 0.8131 0.8421 -

(2005) PLCC 0.9467 0.9482 0.8723 0.9449 0.9489 0.9231 0.9604 0.9597 0.9522 0.9586 0.9437 0.9674 0.9600

SRCC 0.8820 0.8979 0.5531 0.7749 0.8542 0.7046 0.7491 0.8805 0.8559 0.8903 0.8554 0.8340 0.8910

TID KRCC 0.6969 0.7123 0.4027 0.5768 0.6568 0.5340 0.5860 0.6946 0.6636 0.7009 0.6651 0.6445 -

(2008) PLCC 0.8883 0.8762 0.5734 0.7732 0.8451 0.6820 0.8084 0.8738 0.8579 0.8810 0.8462 0.8306 0.8710

SRCC 0.9432 0.6423 0.8057 0.8755 0.9132 0.8105 0.9194 0.9242 0.9212 0.9581 0.9126 0.9467 0.9560

CSIQ KRCC 0.7879 0.7857 0.6078 0.6900 0.7386 0.6241 0.7532 0.7561 0.7522 0.8158 0.7403 0.797 -

(2010) PLCC 0.9395 0.9279 0.8000 0.8612 0.8991 0.8002 0.9278 0.9120 0.9144 0.9576 0.8979 0.9502 0.9540

SRCC 0.8829 0.8965 0.6394 0.6274 0.7851 0.6818 0.6769 0.8015 0.7779 0.8697 0.7846 0.7808 -

TID2013 KRCC 0.6979 0.7183 0.4696 0.4554 0.6029 0.5084 0.5147 0.6289 0.5977 0.6785 0.6255 0.6035 -

PLCC 0.8890 0.9000 0.7017 0.6861 0.8334 0.7129 0.7720 0.8589 0.8319 0.8791 0.8267 0.8267 -

sides, we observed that by tuning the parameters in an
algorithm, the outcome may favor one test dataset over
another. By adopting an optimal set of parameter val-

ues, as in our method and as explained in the IFS paper,
a balance in quality across datasets can be achieved.

Among the state-of-the-art IQA techniques from 2005

to 2015 no one algorithm performs best for all datasets.
GMSD does not show KRCC score and the test on
TID2013 is missing. Thus, we exclude it from the com-
parison. Both IW-SSIM and MAD were published in

2009. While IW-SSIM outperforms MAD in TID, MAD
is better in CSIQ and LIVE. Both algorithms work
equally well in TID2013. While MAD works better in

all four datasets than VIF (2005), IW-SSIM is not as
good as VIF in the LIVE dataset. FSIM was published
in 2011. Although it shows improvement over IW-SSIM

in the TID2008/2013 datasets, MAD (2009) is better
than FSIM in the CSIQ and LIVE datasets. VSI and
IFS were published in 2014 and 2015 respectively. VSI
shows the best results in the two TID datasets and IFS

is better in CSIQ, but MAD is still the best in the LIVE
dataset.

Since IQA research has advanced rapidly in recent
years, new parameters have been introduced in the algo-
rithms to accurately assess image content. Accordingly,
small image datasets are expanded to increase the va-

riety of image content. It can be seen that compared
with TID2008, TID2013 has seven extra types of dis-
tortions adding up to a total of 24 types. In comparison,

LIVE (Release 2) has only five distortion types. Since
TID2008 can be treated as a subset of TID2013, we ex-
clude the scores of TID2008 to avoid double counting.
Also, as pointed out in the IFS paper, “independent

component analysis can provide a good description for
the receptive fields of neurons in the primary visual
cortex which is the most important part of the HVS.”

Image contents vary and each image is composed of
low level components which stimulate the HVS. SSIM-
based techniques detect certain types of component suc-

cessfully, e.g., edge structures in the LIVE dataset. How-
ever, there are other perceptual components, such as

luminance and color, generated from different types of

distortion which are not described in the LIVE dataset.
Thus, evaluation based on the scores in LIVE does not
truly reflect potential distortions. Since TID2013 con-

tains 3000 images and CSIQ (2010) contains 866 im-
ages, which are far more than other datasets, and they
were created more recently, we use them as benchmark

datasets for evaluating IQA algorithms.

Fig. 7 Our proposed method achieves a more consistent per-
formance across datasets, while other methods have better
scores in one at the expense of another dataset.

In a real-world application, it is not possible to pre-
dict what type or what combination of distortion(s)
will occur in the processing, transmission and rendering
pipeline, and accordingly select the best performing al-

gorithm. Instead of comparing scores for 24 distortion
types individually, it is practical to examine the overall
(average) performance of an algorithm. Based on the

test datasets CSIQ and TID2013, the 5 best perform-
ing algorithms with average score over 0.8 are MAD,
VSI, IFS, FSIM and our proposed method. The aver-

age scores are shown in Fig. 7. Note that IFS and VSI
have the best performance in the CSIQ and TID2013
datasets respectively, but at the expense of the other
dataset. FSIM, IFS and MAD have a high difference in

average score of more than 0.1 between the two datasets.
Our algorithm has a high average and achieves more
consistent performance in both datasets. Our method

shows an improvement compared to low level feature
based IQA FSIM [30]. The inclusion of two-tier normal-
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Table 2 Performance of using a single window compared
with using a center-surround analysis

Center- 3x3 5x5 7x7

Surround

SRCC 0.9432 0.9369 0.9346 0.9292

CSIQ KRCC 0.7879 0.7792 0.7752 0.7662

PLCC 0.9395 0.9212 0.9183 0.9124

RMSE 0.0902 0.1026 0.1044 0.1079

ization, optimized frequency scaling and color adapta-

tion, attributes to this improvement.
To-date, there has been no one single IQA algorithm

which outperforms others for all distortion types and

in all benchmark test datasets. Our contribution lies in
proposing a more consistent technique to assess image
quality based on a systematic approach to review the
evolution of IQA algorithms using unbiased test data,

instead of following the traditional method to look at
individual scores in isolation. The scatter plots of the
scores generated by our metric against user subjective

scores are shown in Fig. 8, which illustrates the consis-
tency between our metric scores and the user scores.
In order to illustrate the advantage of using center-

surround in the normalization process, we computed
the scores using only a simple window of size 3x3, 5x5
and 7x7 respectively. The results are shown in Table
2. The lower performance of single window compared

with center-surround agrees with the finding that the
saliency of an image is influenced by the relative dis-
tribution of the image features in the center and sur-

round [2].

Fig. 8 Scatter plots of our metric scores vs subjective scores
on dataset (a) CSIQ, (b) TID, (c) LIVE and (d) TID2013.

An IQA algorithm often works well in one dataset
but not in another. This is similar to machine learning

algorithms whose performance depend on the training
set. Depending on how the controlling parameters of
an IQA algorithm are tuned, e.g., tuned with the CSIQ

dataset, test images sharing similar characteristics with
the training dataset will perform better using that al-

gorithm. In order to illustrate this point, we fine-tuned
the parameters K1 and K2 using the CSIQ dataset only.
The optimal values were 33 and 5 respectively, leading
to an increase of SSRC from 0.943 to 0.948 (Fig. 9),

which is higher than the value 0.946 of MAD Fig. 7.
However, the fine-tuned parameter values lead to a de-
crease of SSRC from 0.882 to 0.869 in the TID dataset.

Until there is an IQA algorithm which can adaptively
adjust the controlling parameters at the image level,
it is difficult to have one algorithm that outperforms
others in all image datasets. Given an arbitrary im-

age, without knowing what training characteristics it
is associated with, our method guarantees a balanced
assessment.

Fig. 9 An IQA algorithm can perform better if fine-tuned
based on a given database, but the same tuned parameter val-
ues are unlikely optimal when applying in another database.
For example, an improved SSRC score of 0.948 was obtained
when K1 = 33 and K2 = 5.

5 Conclusion

We introduced a new low level feature based IQA frame-

work integrating many important characteristics: two-
tier feature distribution normalization, frequency scal-
ing optimization, and color adaptation. We exploit the

latest object detection based architecture and incorpo-
rate our own normalization method and new frequency
scaling functions. The resulting framework generates a
concatenated feature vector for an image that captures

the perceptual factors influencing visual quality. The
difference in feature vectors between the reference im-
age and the target image is computed as the perceptual

difference between the two images. Tests performed on
public datasets demonstrate that our proposed IQA has
better consistent performance across databases. Fur-

thermore, we propose a systematic approach to review
the evolution of IQA algorithms using unbiased test
datasets, instead of following the traditional method
of looking at individual scores in isolation. In future

work we will examine more complex pooling techniques
and perceptual distance metrics. More importantly, we
will examine our normalization and scaling techniques

to adaptively compute the parameter values at image
level.
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1. Barlow, H., Földiák, P.: The computing neuron.
chap. Adaptation and Decorrelation in the Cor-
tex, pp. 54–72. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA (1989). URL
http://dl.acm.org/citation.cfm?id=103938.103942

2. Cavanaugh, J., Bair, V., Movshon, J.: Nature and in-
teraction of signals from the receptive field center and
surround in macaque vi neurons. Journal of Neurophys-
iology 88, 2530–2540 (2002)

3. Chandler, D.M., Hemami, S.S.: Vsnr: A wavelet-based vi-
sual signal-to-noise ratio for natural images. Image Pro-
cessing, IEEE Transactions on 16(9), 2284–2298 (2007)

4. Chang, H.w., Zhang, Q.w., Wu, Q.g., Gan, Y.: Perceptual
image quality assessment by independent feature detec-
tor. Neurocomputing 151, 1142–1152 (2015)

5. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer
networks in unsupervised feature learning. In: Proceed-
ings of the Fourteenth International Conference on Ar-
tificial Intelligence and Statistics, AISTATS 2011, Fort
Lauderdale, USA, April 11-13, 2011, pp. 215–223 (2011)

6. Daly, S.J.: Visible differences predictor: an algo-
rithm for the assessment of image fidelity. pp.
2–15 (1992). DOI 10.1117/12.135952. URL
http://dx.doi.org/10.1117/12.135952

7. Dashan Gao, V.M., Vasconcelos, N.: On the plausibility
of the discriminant center-surround hypothesis for visual
saliency. Journal of Vision 8(7)(13), 1–18 (2008)

8. Dominik Scherer, A.M., Behnke, S.: Evaluation of pool-
ing operations in convolutional architectures for object
recognition. Artificial Neural Networks (ICANN) - Lec-
ture Notes in Computer Science 6354, 92–101 (2010)

9. Ellemberg, D., Allen, H.A., Hess, R.F.: Second-order spa-
tial frequency and orientation channels in human vi-
sion. Vision Research 46(17), 2798 – 2803 (2006). DOI
http://dx.doi.org/10.1016/j.visres.2006.01.028

10. Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil,
R.: Saliency from hierarchical adaptation through decor-
relation and variance normalization. Image and Vision
Computing 30(1), 51–64 (2012)

11. Hildreth, E.: Theory of edge detection. Proceedings of
Royal Society of London 207(187-217), 9 (1980)

12. H.R. Sheikh Z.Wang, L.C., Bovik, A.: Live image quality
assessment database release 2

13. Imamoglu, N., Lin, W., Fang, Y.: A saliency detection
model using low-level features based on wavelet trans-
form. Multimedia, IEEE Transactions on 15(1), 96–105
(2013). DOI 10.1109/TMM.2012.2225034

14. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.:
What is the best multi-stage architecture for object
recognition? In: Computer Vision, 2009 IEEE 12th In-
ternational Conference on, pp. 2146–2153 (2009). DOI
10.1109/ICCV.2009.5459469

15. Larson, E.C., Chandler, D.: Categorical image quality
(csiq) database. Online, http://vision. okstate. edu/csiq
(2010)

16. Larson, E.C., Chandler, D.M.: Most apparent distortion:
a dual strategy for full-reference image quality assess-
ment. In: Proc. SPIE, vol. 7242, pp. 72,420S–72,420S–17
(2009)

17. Liu, A., Lin, W., Narwaria, M.: Image quality assess-
ment based on gradient similarity. Image Processing,
IEEE Transactions on 21(4), 1500–1512 (2012). DOI
10.1109/TIP.2011.2175935

18. Liu, H., Heynderickx, I.: Towards an efficient model of
visual saliency for objective image quality assessment.

In: Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on, pp. 1153–1156
(2012). DOI 10.1109/ICASSP.2012.6288091

19. Otazu, X., Vanrell, M., Prraga, C.A.: Multiresolution
wavelet framework models brightness induction effects.
Vision Research 48(5), 733 – 751 (2008). DOI
http://dx.doi.org/10.1016/j.visres.2007.12.008

20. Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V.,
Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli,
M., Battisti, F., et al.: Image database tid2013: Peculiar-
ities, results and perspectives. Signal Processing: Image
Communication 30, 57–77 (2015)

21. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian,
K., Carli, M., Battisti, F.: Tid2008-a database for eval-
uation of full-reference visual quality assessment met-
rics. Advances of Modern Radioelectronics 10(4), 30–45
(2009)

22. Rohaly, A.M., Corriveau, P.J., Libert: Video qual-
ity experts group: current results and future di-
rections (2000). DOI 10.1117/12.386632. URL
http://dx.doi.org/10.1117/12.386632

23. Sampat, M.P., Wang, Z., Gupta, S., Bovik, A.C., Markey,
M.K.: Complex wavelet structural similarity: a new image
quality index. In: IEEE TRANSACTIONS ON IMAGE
PROCESSING (2009)

24. Sheikh, H., Bovik, A., de Veciana, G.: An information fi-
delity criterion for image quality assessment using natural
scene statistics. Image Processing, IEEE Transactions on
14(12), 2117–2128 (2005). DOI 10.1109/TIP.2005.859389

25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.:
Image quality assessment: From error visibility to struc-
tural similarity. IEEE TRANSACTIONS ON IMAGE
PROCESSING 13(4), 600–612 (2004)

26. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale struc-
tural similarity for image quality assessment. In: Signals,
Systems and Computers, 2004. Conference Record of the
Thirty-Seventh Asilomar Conference on, vol. 2, pp. 1398–
1402. Ieee (2003)

27. Wu, J., Lin, W., Shi, G., Liu, A.: Perceptual quality met-
ric with internal generative mechanism. Image Process-
ing, IEEE Transactions on 22(1), 43–54 (2013). DOI
10.1109/TIP.2012.2214048

28. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient mag-
nitude similarity deviation: A highly efficient perceptual
image quality index (2013)

29. Zhang, L., Shen, Y., Li, H.: Vsi: A visual saliency-induced
index for perceptual image quality assessment. Image
Processing, IEEE Transactions on 23(10), 4270–4281
(2014). DOI 10.1109/TIP.2014.2346028

30. Zhang, L., Zhang, D., Mou, X., Zhang, D.: Fsim: A fea-
ture similarity index for image quality assessment. Im-
age Processing, IEEE Transactions on 20(8), 2378–2386
(2011). DOI 10.1109/TIP.2011.2109730


