Skip to main content
Log in

Sharpness estimation in facial images by spectrum approximation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel approach to image sharpness assessment designed primarily for facial images. The approach can be described as holistic analysis of the frequency–amplitude spectrum by means of fitting an approximation model and obtaining the estimate based on the model’s parameters. The proposed method shows better correlation with perceived sharpness than other existing methods both on synthetic tests and on a set of real-world face images. We demonstrate an application of the resulting estimate to enhance the accuracy of a face gender classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferzli, R., Karam, L.J.: A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. 18(4), 717–728 (2009)

    Article  MathSciNet  Google Scholar 

  2. Gaidhane, V.H., Hote, Y.V., Singh, V.: Image focus measure based on polynomial coefficients and spectral radius. SIViP 9(1), 203–211 (2015)

    Article  Google Scholar 

  3. Manap, R., Shao, L.: Non-distortion-specific no-reference image quality assessment: a survey. Inf. Sci. 301, 141–160 (2015)

    Article  Google Scholar 

  4. Minin, P., Mikhaylov, D.: Analysis of gender recognition methods’ robustness. In: Proceedings of Fifth International Conference on Intelligent Control and Information Processing, Dalian (2014)

  5. Batten, C.F.: Autofocusing and Astigmatism Correction in the Scanning Electron Microscope (2000)

  6. Crété-Roffet, F., Dolmiere, T., Ladret, P., Nicolas, M.: The blur effect: perception and estimation with a new no-reference perceptual blur metric. In: SPIE Electronic Imaging Symposium Conference on Human Vision and Electronic Imaging, San Jose, USA (2007)

  7. Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 24(10), 3218–3231 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bahrami, K., Kot, A.: A fast approach for no-reference image sharpness assessment based on maximum local variation. IEEE Signal Process. Lett. 21(6), 751–755 (2014)

    Article  Google Scholar 

  9. Zhu, X., Milanfar, P.: A no-reference sharpness metric sensitive to blur and noise. In: International Workshop on Quality of Multimedia Experience, 2009. QoMEx 2009 (2009)

  10. Abdalmajeed, S., Shuhong, J.: Using the natural scenes’ edges for assessing image quality blindly and efficiently. Math. Probl. Eng. 2015, 9 (2015). doi:10.1155/2015/389504

  11. Li, L., Lin, W., Wang, X., Yang, G., Bahrami, K., Kot, A.: No-reference image blur assessment based on discrete orthogonal moments. IEEE Trans. Cybern. 46(1), 39–50 (2016)

    Article  Google Scholar 

  12. Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional Neural Networks for No-Reference Image Quality Assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1733–1740 (2014)

  13. Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: A no-reference perceptual blur metric. In: Proceedings of the International Conference on Image Processing, Rochester, NY (2002)

  14. Guan, J., Zhang, W., Gu, J., Ren, H.: No-reference blur assessment based on edge modeling. J. Vis. Commun. Image Represent. 29, 1–7 (2015)

    Article  Google Scholar 

  15. De, K., Masilamani, V.: Image sharpness measure for blurred images in frequency domain. Procedia Eng. 64, 149–158 (2013)

    Article  Google Scholar 

  16. Cohen, E., Yitzhaky, Y.: No-reference assessment of blur and noise impacts on image quality. Signal Image Video Process. 4(3), 289–302 (2010)

    Article  Google Scholar 

  17. Vu, C.T., Phan, T.D., Chandler, D.M.: S3: a spectral and spatial measure of local perceived sharpness in natural images. IEEE Trans. Image Process. 21(3), 934–945 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ciancio, A., da Costa, A.T., da Silva, E.A., Said, A., Samadani, R., Obrador, P.: No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Trans. Image Process. 20(1), 64–75 (2011)

    Article  MathSciNet  Google Scholar 

  19. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)

    Article  Google Scholar 

  20. Field, D.J., Brady, N.: Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes. Vis. Res. 37(23), 3367–3383 (1997)

    Article  Google Scholar 

  21. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  Google Scholar 

  22. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python. http://www.scipy.org/ (2001). Accessed 16 June 2016

  23. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nordstrøm, M.M., Larsen, M., Sierakowski, J., Stegmann, M.B.: The IMM Face Database—An Annotated Dataset of 240 Face Images. Informatics and Mathematical Modelling, Technical University of Denmark, DTU (2004)

  25. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on Faces in ’Real-Life’ Images: Detection, Alignment, and Recognition (2008)

  26. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  27. Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLoS Comput. Biol. 4, e27 (2008)

    Article  MathSciNet  Google Scholar 

  28. Shan, C.: Learning local binary patterns for gender classification on real-world face images. Pattern Recogn. Lett. 33, 431–437 (2012)

    Article  Google Scholar 

  29. Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in thewild. In: Workshop on Faces in “Real-Life” Images: Detection, Alignment, and Recognition (2008)

  30. Turk, M., Pentland, A.: Eigenfaces for recognition. J.Cogn. Neurosci. 3, 71–86 (1991)

    Article  Google Scholar 

  31. Fiche, C., Ladret, P., Vu, N.-S.: Blurred face recognition algorithm guided by a no-reference blur metric. In: IS&T/SPIE Electronic Imaging (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Minin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minin, P., Shumilov, Y. Sharpness estimation in facial images by spectrum approximation. SIViP 11, 163–170 (2017). https://doi.org/10.1007/s11760-016-0915-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0915-4

Keywords

Navigation