Skip to main content
Log in

Automatic superpixel generation algorithm based on a quadric error metric in 3D space

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

As a preprocessing step for computer vision tasks, research on generating superpixels of an image has been widely conducted recently. In this paper, we propose a fully automatic superpixel generation algorithm by simplifying the 3D triangle mesh modeled from a 2D input image. The simplification is performed based on a modified quadric error metric (QEM) method. The pipeline of our algorithm is simple. Given an image, we first turn it into a 2D triangle mesh and then lift the mesh to 3D based on the gray values of the image. We then simplify the 3D mesh based on the modified QEM method which encodes the features in the image intrinsically to ensure feature-aware superpixels. After obtaining the simplified mesh, we map it back to the 2D image to generate triangular-shaped superpixels. Our algorithm is fully automatic. The number of superpixels can be controlled intuitively. Experimental results demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xie, Y., Xu, L., Wang, Z.: Automated co-superpixel generation via graph matching. Signal Image Video Process. 8(4), 753–763 (2014)

    Article  Google Scholar 

  2. Du, Q., Gunzburger, M., Ju, L., et al.: Centroidal Voronoi tessellation algorithms for image compression, segmentation, and multichannel restoration. J. Math. Imaging Vis. 24(2), 177–194 (2006)

    Article  MathSciNet  Google Scholar 

  3. Wang, J., Ju, L., Wang, X.: An edge-weighted centroidal Voronoi tessellation model for image segmentation. IEEE Trans. Image Process. 18(8), 1844–1858 (2009)

    Article  MathSciNet  Google Scholar 

  4. Liu, J., Tai, X., Huang, H., et al.: A fast segmentation method based on constraint optimization and its applications: intensity inhomogeneity and texture segmentation. Pattern Recogn. 44(9), 2093–2108 (2011)

    Article  Google Scholar 

  5. Wang, J., Wang, X.: VCells: simple and efficient superpixels using edge-weighted centroidal Voronoi tessellations. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1241–1247 (2012)

    Article  Google Scholar 

  6. Wu, Q., Yu, Y.: Two-level image segmentation based on region and edge integration. DICTA, pp. 957–966 (2003)

  7. Spanel, M., Krsek, P.: Vector-based medical image segmentation using adaptive Delaunay triangulation. In: Proceedings of the Sixth IASTED International Conference on Visualization, Imaging, and Image Processing, Palma de Mallorca, ES, ACTA Press, p. 6 (2006)

  8. Sood, S., Krishnamurthy, A.: Triangulation cut for image segmentation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008. IEEE 2008, 941–944 (2008)

  9. Li, H., Wu, W., Wu, E.: Robust interactive image segmentation via graph-based manifold ranking. Comput. Vis. Media 1(3), 183–195 (2015)

    Article  Google Scholar 

  10. Xu, L., Zeng, L., Wang, Z.: Saliency-based superpixels. SIViP 8(1), 181–190 (2014)

    Article  Google Scholar 

  11. Qi, W., Cheng, M.M., Borji, A., et al.: SaliencyRank: two-stage manifold ranking for salient object detection. Comput. Visual Media 1(4), 309–320 (2015)

  12. Yin, X., Femiani, J., Wonka, P., et al.: A new qem for parametrization of raster images. In: Computer Graphics Forum. Blackwell Publishing Ltd 30(8), 2440–2451 (2011)

  13. Wang, Q., Spratling, M.W.: A simplified texture gradient method for improved image segmentation. Signal Image Video Process. 10(4), 679–686 (2016)

    Article  Google Scholar 

  14. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  15. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Computer Vision—ECCV 2010, European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceedings, pp. 211–224 (2010)

  16. Zhang, Y., Li, X., Gao, X., Zhang, C.: A simple algorithm of superpixel segmentation with boundary constraint. IEEE Trans. Circuits Syst. Video Technol. doi:10.1109/TCSVT.2016.2539839

  17. Shen, J., Du, Y., Wang, W., et al.: Lazy random walks for superpixel segmentation. IEEE Trans. Image Process. 23(4), 1451–1462 (2014)

    Article  MathSciNet  Google Scholar 

  18. Dong, X., Shen, J., Shao, L., et al.: Sub-Markov random walk for image segmentation. IEEE Trans. Image Process. 25(2), 516–527 (2016)

    Article  MathSciNet  Google Scholar 

  19. Shen, J., Du, Y., Li, X.: Interactive segmentation using constrained Laplacian optimization. IEEE Trans. Circuits Syst. Video Technol. 24(7), 1088–1100 (2014)

    Article  Google Scholar 

  20. Liang, Y., Shen, J., Dong, X., et al.: Video supervoxels using partially absorbing random walks. IEEE Trans. Circuits Syst. Video Technol. (2015). doi:10.1109/TCSVT.2015.2406232

  21. Levinshtein, A., Stere, A., Kutulakos, K.N., et al.: TurboPixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  22. Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  23. Van den Bergh, M., Boix, X., Roig, G.: Seeds: superpixels extracted via energy-driven sampling. In: Computer Vision C ECCV, et al.: Springer. Berlin Heidelberg 2012, 13–26 (2012)

  24. Moore, A.P., Prince, J.D., Warrell, J.: Superpixel lattices. In: Computer Vision and Pattern Recognition et al.: CVPR 2008. IEEE Conference on. IEEE 2008, 1–8 (2008)

  25. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., pp. 209–216 (1997)

  26. Hoppe, H.: New quadric metric for simplifiying meshes with appearance attributes. In: Proceedings of the conference on Visualization’99: celebrating ten years. IEEE Computer Society Press, pp. 59–66 (1999)

  27. Martin, D., Fowlkes, C., Tal, D.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Computer Vision, 2001. ICCV, et al.: Proceedings. Eighth IEEE International Conference on. IEEE 2001(2), 416–423 (2001)

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (61332015, 61373078, 61272245) and NSFC Joint Fund with Guangdong (U1201258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ma, L., Zhou, Y. et al. Automatic superpixel generation algorithm based on a quadric error metric in 3D space. SIViP 11, 471–478 (2017). https://doi.org/10.1007/s11760-016-0983-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0983-5

Keywords

Navigation