Skip to main content
Log in

Catching the high altitude invisible by satellite-based forward scatter PCL

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents a feasibility study on using satellite signal for passive radar application. Our focus is on utilizing geostationary Earth orbit satellite signal with suitable properties, like Inmarsat. Then, a new method of detection for passive coherent location using adaptive filter weights variation model is presented. To evaluate the performance, three different scenarios including a low Earth orbit satellite, a space shuttle, and a high-altitude aircraft as the targets of interest are considered. In addition to being covert, it will be shown that using such passive radar system, we can benefit the forward scatter enhancement, which enables us to detect such high-altitude targets that are normally invisible to radar systems. At last, the performance of the proposed method is compared with that of traditional methods. The analysis reveals that the proposed method has higher detection performance compared to the traditional detection methods in passive radars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Global positioning system.

  2. Global system for mobile communications.

  3. Forward scatter passive coherent location.

  4. Direct path interference.

  5. Equivalent isotropically radiated power.

  6. Medium Earth orbit.

  7. Note that most of recent digital communication systems use OFDM schemes.

  8. Normalized least mean squares filter.

  9. Recursive least squares.

  10. Adaptive filter weights.

  11. Note that there is no need to DPI cacellation in AFW.

  12. e.g., its noisy nature which results in high processing gain.

  13. Digital video broadcasting-terrestrial.

  14. Multiple input multiple output.

References

  1. Griffiths, H., Baker, C.: Passive coherent location radar systems. Part 1: performance prediction. IEE Proc. Radar Sonar Navig. 152(3), 153–159 (2005)

    Article  Google Scholar 

  2. Griffiths, H.: New directions in bistatic radar. In: IEEE Radar Conference, Italy, pp. 1–6 (2008)

  3. Saini, R., Cherniakov, M.: DTV signal ambiguity function analysis for radar application. IEE Proc. Radar Sonar Navig. 152(3), 133–142 (2005)

    Article  Google Scholar 

  4. Bayat, S., Nayebi, M., Norouzi, Y.: Target detection by passive coherent FM based bistatic radar. In: International Conference on Radar, Australia, pp. 412–415 (2008)

  5. Radmard, M., Bastani, M.H., Behnia, F., Nayebi, M.M.: Feasibility analysis of utilizing the ‘8k mode’ DVB-T signal in passive radar applications. Sci. Iran. 19(6), 1763–1770 (2012)

    Article  Google Scholar 

  6. Tan, D., Sun, H., Lu, Y., Lesturgie, M., Chan, H.: Passive radar using global system for mobile communication signal: theory, implementation and measurements. IEE Proc. Radar Sonar Navig. 152(3), 116–123 (2005)

    Article  Google Scholar 

  7. Cristallini, D., Caruso, M., Falcone, P., Langellotti, D., Bongioanni, C., Colone, F., Scafe, S., Lombardo, P.: Space-based passive radar enabled by the new generation of geostationary broadcast satellites. In: IEEE Aerospace Conference, USA, pp. 1–11 (2010)

  8. Kuschel, H., O’Hagan, D.: Passive radar from history to future. In: 11th International Radar Symposium (IRS), Lithuania, pp. 1–4 (2010)

  9. Hongchao, L., Tianyun, W., Changchang, L., Weidong, C.: Sparse passive radar imaging based on direct broadcasting satellite. In: IEEE International Conference on Signal Processing (ICSP), China, pp. 1852–1855 (2012)

  10. Farina, A.: Green radar state of art: theory, practice and way ahead. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Plenary talk, Italy (2014). www.icassp2014.org/final200614/er2/0005/index.html

  11. Bernaschi, M., Di Lallo, A., Farina, A., Fulcoli, R., Gallo, E., Timmoneri, L.: Use of a graphics processing unit for passive radar signal and data processing. IEEE Aerosp. Electron. Syst. Mag. 10(27), 52–59 (2012)

    Article  Google Scholar 

  12. Howland, P.: Editorial: Passive radar systems. IEE Proc. Radar Sonar Navig. 152(3), 105–106 (2005)

    Article  Google Scholar 

  13. Willis, N.J.: Bistatic Radar. SciTech Publishing, Raleigh (2005)

    Google Scholar 

  14. Skolnik, M.: Radar Handbook, 3rd edn. McGraw-Hill, New York (2008)

    Google Scholar 

  15. Glaser, J.: Bistatic RCS of complex objects near forward scatter. IEEE Trans Aerosp. Electron. Syst. AES–21(1), 70–78 (1985)

    Article  Google Scholar 

  16. Cherniakov, M., Nezlin, D., Kubik, K.: Air target detection via bistatic radar based on LEOs communication signals. IEE Proc. Radar Sonar Navig. 149(1), 33–38 (2002)

    Article  Google Scholar 

  17. Koch, V., Westphal, R.: New approach to a multistatic passive radar sensor for air/space defense. IEEE Aerosp. Electron. Syst. Mag. 10(11), 24–32 (1995)

  18. Suberviola, I., Mayordomo, I., Mendizabal, J.: Experimental results of air target detection with a GPS forward-scattering radar. IEEE Geosci. Remote Sens. Lett. 9(1), 47–51 (2012)

    Article  Google Scholar 

  19. Chitgarha, M.M., Radmard, M., Nazari Majd, M., Nayebi, M.M.: Adaptive filtering techniques in passive radar. In: 14th International Radar Symposium (IRS), Germany, pp. 1067–1072 (2013)

  20. Gashinova, M., Daniel, L., Hoare, E., Kabakchiev, K., Cherniakov, M., Sizov, V.: Forward scatter radar mode for passive coherent location systems. In: International Conference on Radar, Australia, pp. 235–239 (2013)

  21. Cherniakov, M.: Bistatic Radar: Emerging Technology. Wiley, New York (2008)

    Book  Google Scholar 

  22. Cherniakov, M., Abdullah, R., Jancovic, P., Salous, M., Chapursky, V.: Automatic ground target classification using forward scattering radar. IEE Proc. Radar Sonar Navig. 153(5), 427–437 (2006)

    Article  Google Scholar 

  23. Gashinova, M., Daniel, L., Hoare, E., Sizov, V., Kabakchiev, K., Cherniakov, M.: Signal characterisation and processing in the forward scatter mode of bistatic passive coherent location systems. EURASIP J. Adv. Signal Process. 1, 1–13 (2013)

    Google Scholar 

  24. Colone, F., Cardinali, R. Lombardo, P.: Cancellation of clutter and multipath in passive radar using a sequential approach. In: IEEE Conference on Radar, USA (2006)

  25. Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice-Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  26. Tan, D., Lesturgie, M., Sun, H., Lu, Y.: Space time interference analysis and suppression for airborne passive radar using transmissions of opportunity. IET Radar Sonar Navig. 8(2), 142–152 (2014)

    Article  Google Scholar 

  27. Gashinova, M., Daniel, L., Sizov, V., Hoare, E., Cherniakov, M.: Phenomenology of Doppler forward scatter radar for surface targets observation. IET Radar Sonar Navig. 7(4), 422–432 (2013)

    Article  Google Scholar 

  28. Radmard, M., Bastani, M., Behnia, F., Nayebi, M.M.: Advantages of the DVB-T signal for passive radar applications. In: 11th International Radar Symposium (IRS), Lithuania (2010)

  29. Li, L.: Joint parameter estimation and target localization for bistatic MIMO radar system in impulsive noise. Signal Image Video Process. 9(8), 1–9 (2014)

  30. Radmard, M., Chitgarha, M.M., Nazari Majd, M., Nayebi, M.M.: Antenna placement and power allocation optimization in MIMO detection. IEEE Trans. Aerosp. Electron. Syst. 50(2), 1468–1478 (2014)

    Article  Google Scholar 

  31. Radmard, M., Nazari Majd, M., Bahrololoom, E., Chitgarha, M.M., Nayebi,M.M.: Receivers’ placement of a MIMO radar in the presence of mountains. In: International Radar Conference, France, pp. 1–6 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Radmard.

Additional information

This work is supported in part by the Iran’s National Elites Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radmard, M., Bayat, S., Farina, A. et al. Catching the high altitude invisible by satellite-based forward scatter PCL. SIViP 11, 565–572 (2017). https://doi.org/10.1007/s11760-016-0995-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0995-1

Keywords

Navigation