Skip to main content
Log in

Quantization parameter cascading for video coding: leveraging a new temporal distortion propagation model

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In video coder, inter-frame prediction causes distortion propagation among temporally adjacent frames. This distortion dependency is a crucial factor for rate control optimization. Quantization parameter cascading (QPC) is an efficient technique to achieve dependent rate distortion optimization (RDO). This paper proposes a general framework for temporal dependency analysis by leveraging a distortion propagation model, which is derived by employing window-based preanalysis on original frames. Then, a quantization parameter offset \(\delta \) model is proposed for achieving fine-granularity quantization control, according to the amount of distortion propagation measured by the relative propagation cost \(\rho \). This paper applies competitive decision in exploring \(\delta \)\(\rho \) model as accurate as possible and then proposes an improved \(\delta \)\(\rho \) model tailored for dependent RDO. The simulation results verify that the temporal QPC algorithm with the proposed model achieves up to 1.1–1.4 dB PSNR improvement, with smaller temporal distortion fluctuation contributed by efficient bit allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sullivan, G.J., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Signal Process. Mag. 15(6), 74–90 (1998)

    Article  Google Scholar 

  2. Iii, H.E.: Generalized Lagrange multiplier method for solving problems of optimum allocation of resources. Oper. Res. 11(3), 399–417 (1963)

    Article  MathSciNet  Google Scholar 

  3. Sullivan, G.J., Ohm, J.R., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  4. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–570 (2003)

    Article  Google Scholar 

  5. Yang, E.H., Yu, X.: Rate distortion optimization for H.264 interframe coding: a general framework and algorithms. IEEE Trans. Image Process. 16(7), 1774–1784 (2007)

    Article  MathSciNet  Google Scholar 

  6. Yin, H.B., Yang, E.H., Yu, X.: Fast soft decision quantization with adaptive preselection and dynamic trellis graph. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1 (2014)

    Google Scholar 

  7. Liu, M., Ren, P., Xiang, Z.: Frame-level bit allocation for hierarchical coding of H.265/HEVC considering dependent rate-distortion characteristics. Signal Image Video Process. 10(8), 1457–1463 (2016)

    Article  Google Scholar 

  8. Hsia, S.C., Hsu, W.C., Wu, S.R.: A fast rate-distortion optimization algorithm for H.264/AVC codec. Signal Image Video Process. 7(5), 939–949 (2011)

    Article  Google Scholar 

  9. Ramchandran, K., Ortega, A., Vetterli, M.: Bit allocation for dependent quantization with applications to multiresolution and MPEG video coders. IEEE Trans. Image Process. 3(5), 533–545 (1994)

    Article  Google Scholar 

  10. Liu, S., Kuo, C.C.J.: Joint temporal-spatial bit allocation for video coding with dependency. IEEE Trans. Circuits Syst. Video Technol. 15(1), 15–26 (2005)

    Article  Google Scholar 

  11. Gong, Y., Wan, S., Yang, K., Yang, Y.: Rate-distortion-optimization-based quantization parameter cascading technique for random-access configuration in H.265/HEVC. IEEE Trans. Circuits Syst. Video Technol. PP(99), 1. doi:10.1109/TCSVT.2016.2539718

  12. Zhao, T., Zhou, W., Chang, W.C.: Adaptive quantization parameter cascading in HEVC hierarchical coding. IEEE Trans. Image Process. 25(7), 1 (2016)

    Article  MathSciNet  Google Scholar 

  13. Pang, C., Au, O.C., Zou, F., Dai, J., Zhang, X., Dai, W.: An analytic framework for frame-level dependent bit allocation in hybrid video coding. IEEE Inter. Workshop Multimedia Signal Process 47(10), 1–4 (2011)

  14. Wang, S., Ma, S., Wang, S., Zhao, D.: Rate-gop based rate control for high efficiency video coding. IEEE J. Sel. Top. Signal Process. 7(6), 1101–1111 (2013)

    Article  Google Scholar 

  15. Xu, Y., Zhu, C.: End-to-end rate-distortion optimized description generation for H.264 multiple description video coding. IEEE Trans. Circuits Syst. Video Technol. 23(9), 1523–1536 (2013)

    Article  Google Scholar 

  16. Mohammed, M.H.: Bit allocation based on motion vector analysis for H.264/AVC. In: Data Compression Conference (2007)

  17. Tescher, A.G.: Dependent video coding using a tree representation of pixel dependencies. In: SPIE Optical Engineering + Applications, pp. 81350H–81350H-11 (2011)

  18. Merritt, L., Vanam, R., Merritt, L.: X264: a high performance H.264/AVC encoder (2006). http://akuvian.org/src/x264/overview_x264_v8_5.pdf

  19. Xu, L., Zhao, D., Ji, X., Gao, W.: Window-level rate control for smooth picture quality and smooth buffer occupancy. IEEE Trans. Image Process. 20(3), 723–34 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSFC 61572449, 61379027, in part by the Zhejiang NSF Y15F020075, LY12F01011, and LY13H180011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibing Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Cai, H., Fan, M. et al. Quantization parameter cascading for video coding: leveraging a new temporal distortion propagation model. SIViP 11, 801–808 (2017). https://doi.org/10.1007/s11760-016-1025-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1025-z

Keywords

Navigation