Skip to main content
Log in

A hybrid evolutionary algorithm for multiobjective sparse reconstruction

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Sparse reconstruction (SR) algorithms are widely used in acquiring high-quality recovery results in compressed sensing. Existing algorithms solve SR problem by combining two contradictory objectives (measurement error and sparsity) using a regularizing coefficient. However, this coefficient is hard to determine and has a large impact on recovery quality. To address this concern, this paper converts the traditional SR problem to a multiobjective SR problem which tackles the two objectives simultaneously. A hybrid evolutionary paradigm is proposed, in which differential evolution is employed and adaptively configured for exploration and a local search operator is designed for exploitation. Another contribution is that the traditional linearized Bregman method is improved and used as the local search operator to increase the exploitation capability. Numerical simulations validate the effectiveness and competitiveness of the proposed hybrid evolutionary algorithm with LB-based local search in comparison with other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wilf, P., Zhang, S., Chikkerur, S., Little, S.A., Wing, S.L., Serre, T.: Computer vision cracks the leaf code. Proc. Natl. Acad. Sci. U. S. A. 113(12), 3305–3310 (2016)

    Article  Google Scholar 

  2. Zhang, S., Yao, H., Sun, X., Xiusheng, L.: Sparse coding based visual tracking: review and experimental comparison. Pattern Recognit. 46(7), 1772–1788 (2013)

    Article  Google Scholar 

  3. Zhang S: A biologically inspired appearance model for robust visual tracking. IEEE Trans. Neural Netw. Learn. Syst. 1–14 (2016)

  4. Zhang, S., Yao, H., Sun, X., Wang, K., Zhang, J., Xiusheng, L., Zhang, Y.: Action recognition based on overcomplete independent components analysis. Inf. Sci. 281, 635–647 (2014)

    Article  Google Scholar 

  5. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yeganli, F., Nazzal, M., Unal, M., H, O.: Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness. Signal Image Video Process. 10(3), 535–542 (2016)

    Article  Google Scholar 

  8. Vinay, K.G., Haque, S.M., Babu, R.V., Ramakrishnan, K.R.: Sparse representation-based human detection: a scale-embedded dictionary approach. Signal Image Video Process. 10(3), 585–592 (2016)

    Article  Google Scholar 

  9. Peng, J., Luo, T.: Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification. Signal Image Video Process. 10(4), 761–768 (2016)

    Article  Google Scholar 

  10. Seo, J.-W., Kim, S.-D.: Dynamic background subtraction via sparse representation of dynamic textures in a low-dimensional subspace. Signal Image Video Process. 10(1), 29–36 (2016)

    Article  Google Scholar 

  11. Tropp, J., Gilbert, A.C., et al.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 57(7), 4680–4688 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  14. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007)

    Article  Google Scholar 

  15. Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale \(\ell \)1-regularized least squares. IEEE J. Sel. Top. Signal Process. 1, 606–617 (2007)

  16. Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14, 629–654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yin, W.: Analysis and generalizations of the linearized Bregman method[J]. Siam J. Imaging Sci. 3(4), 856–877 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, A.Y., Zhou, Z., Balasubramanian, A.G., et al.: Fast \(l\)1-minimization algorithms for robust face recognition. Image Process. IEEE Trans. 22(8), 3234–3246 (2013)

    Article  Google Scholar 

  19. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 310–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. Siam J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Malioutov, D.M., Cetin, M., Willsky, A.S.: Homotopy continuation for sparse signal representation[C]. Proc. (ICASSP ’05). IEEE Int. Conf. Acoust. Speech Signal Process. 5, 733–736 (2005)

  22. Hale, E.T., Yin, W., Zhang, Y.: A Fixed-Point Continuation Method for ’1-Regularized Minimization with Applications to Compressed Sensing. Caam Tr (2007)

  23. Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  24. Li, L., Yao, X., Stolkin, R., et al.: An evolutionary multiobjective approach to sparse reconstruction. IEEE Trans. Evolut. Comput. 18(6), 827–845 (2014)

    Article  Google Scholar 

  25. Price, K.V.: Differential evolution versus the functions of the 2nd, ICEO[C]. IEEE Int. Conf. Evolut. Comput. IEEE, 153–157 (1997)

  26. Mierswa, I., Wurst, M.: Information preserving multi-objective feature selection for unsupervised learning[C]. Conf. Genet. Evolut. Comput. ACM, 1545–1552 (2006)

  27. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evolut. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  28. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm (2001)

  29. Dehnad, K.: Density estimation for statistics and data analysis. Technometrics 29(4), 296–297 (1986)

    Google Scholar 

  30. Deb, K., Thiele, L., Laumanns M, et al. Scalable multi-objective optimization test problems[C] Evolutionary Computation, 2002. CEC ’02. Proceedings of the 2002 Congress on. IEEE, (2002) :825–830

  31. Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  32. Branke, J., Deb, K., Dierolf, H., et al.: Finding knees in multi-objective optimization. Lect. Notes Comput. Sci. 3242, 722–731 (2004)

    Article  Google Scholar 

  33. Handl, J., Knowles, J.D.: Feature subset selection in unsupervised learning via multiobjective optimization. Int. J. Comput. Intell. Res. 2(3), 217–238 (2006)

    Article  MathSciNet  Google Scholar 

  34. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., et al.: Survey of multiobjective evolutionary algorithms for data mining: part II. IEEE Trans. Evolut. Comput. 18(1), 20–35 (2014)

    Article  Google Scholar 

  35. Wright, S.J., Nowak, R.D., Figueiredo, M., et al.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 3373–3376 (2009)

    Article  MathSciNet  Google Scholar 

  36. http://www.stanford.edu/~boyd/l1_ls/

  37. http://www.eecs.berkeley.edu/~yang/software/l1benchmark/l1benchmark.zip

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihai Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Zhao, Q., Wang, Z. et al. A hybrid evolutionary algorithm for multiobjective sparse reconstruction. SIViP 11, 993–1000 (2017). https://doi.org/10.1007/s11760-016-1049-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1049-4

Keywords

Navigation