Skip to main content
Log in

Detection of myocardial infarction from vectorcardiogram using relevance vector machine

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Myocardial infarction is a coronary artery ailment, and it is characterized by the changes in the morphological features such as the shape of T-wave, Q-wave and ST-segment of ECG signal. In clinical standard, it is a challenging problem to diagnose MI pathology using 12-lead ECG and vectorcardiogram (VCG). VCG has the advantage to record the heart electrical activities in three orthogonal planes (frontal, sagittal and transverse). This paper proposes a new method for automated detection or grading of MI pathology from vectorcardiogram (VCG) signals. The method uses relevance vector machine (RVM) classifier and the multiscale features of VCG signal for MI detection. The multiscale analysis of VCG signal is performed using dual-tree complex wavelet transform. The diagnostic features such as the complex wavelet sub-band (CWS) \(L_{1}\)-Norm (CWS \(L_{1}\)-norm) and the complex wavelet entropy (CWE) are evaluated from the sub-band complex wavelet coefficients of each orthogonal lead of VCG. The RVM classifier is considered to evaluate the performance of the combination of the CWS \(L_{1}\)-norm and the CWE features of VCG. Three different kernel functions such as Gaussian, bubble and Cauchy are used for RVM. The results show that the RVM classifier with Gaussian kernel function has an average accuracy, an average sensitivity and an average specificity values of 99.80, 99.67 and 99.90%, respectively. The performance of RVM classifier is compared with the existing methods for detection of MI from VCG and 12-lead ECG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldberger, A.L.: Clinical Electrocardiography: A Simplified Approach. Elsevier Health Sciences, Amsterdam (2012)

    Google Scholar 

  2. Yang, H.: Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals. IEEE Trans. Biomed. Eng. 58(2), 339–347 (2011)

    Article  Google Scholar 

  3. Acharya, U.R., Fujita, H., Sudarshan, V.K., Oh, S.L., Adam, M., Koh, J.E., Tan, J.H., Ghista, D.N., Martis, R.J., Chua, C.K., et al.: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowl. Based Syst. 99, 146–156 (2016)

    Article  Google Scholar 

  4. Acharya, U.R., Fujita, H., Adam, M., Lih, O.S., Sudarshan, V.K., Hong, T.J., Koh, J.E., Hagiwara, Y., Chua, C.K., Poo, C.K., et al.: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ecg signals: A comparative study. Inf. Sci. 377, 17–29 (2017)

    Article  Google Scholar 

  5. Tranchesi, J., Teixeira, V., Ebaid, M., Boccalandro, I., Bocanegra, J., Pileggi, F.: The vectorcardiogram in dorsal or posterior myocardial infarction. Am. J. Cardiol. 7(4), 505–510 (1961)

    Article  Google Scholar 

  6. Sharma, L., Tripathy, R., Dandapat, S.: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Trans. Biomed. Eng. 62(7), 1827–1837 (2015)

    Article  Google Scholar 

  7. Starr, J.W., Wagner, G.S., Draffin, R.M., Reed, J.B., Walston, A., Behar, V.S.: Vectorcardiographic criteria for the diagnosis of anterior myocardial infarction. Circulation 53(2), 229–234 (1976)

    Article  Google Scholar 

  8. Porée, F., Kervio, G., Carrault, G.: Ecg biometric analysis in different physiological recording conditions. Signal Image Video Process. 10(2), 267–276 (2016)

    Article  Google Scholar 

  9. Dawson, D., Yang, H., Malshe, M., Bukkapatnam, S.T., Benjamin, B., Komanduri, R.: Linear affine transformations between 3-lead (frank xyz leads) vectorcardiogram and 12-lead electrocardiogram signals. J. Electrocardiol. 42(6), 622–630 (2009)

    Article  Google Scholar 

  10. Martis, R.J., Acharya, U.R., Adeli, H.: Current methods in electrocardiogram characterization. Comput. Biol. Med. 48, 133–149 (2014)

    Article  Google Scholar 

  11. Al-Kindi, S.G., Ali, F., Farghaly, A., Nathani, M., Tafreshi, R.: “Towards real-time detection of myocardial infarction by digital analysis of electrocardiograms,” In: 2011 1st Middle East Conference on Biomedical Engineering, pp. 454–457, IEEE, (2011)

  12. Arif, M., Malagore, I.A., Afsar, F.A.: Detection and localization of myocardial infarction using k-nearest neighbor classifier. J. Med. Syst. 36(1), 279–289 (2012)

    Article  Google Scholar 

  13. Banerjee, S., Mitra, M.: “Ecg feature extraction and classification of anteroseptal myocardial infarction and normal subjects using discrete wavelet transform,” In: Systems in Medicine and Biology (ICSMB), 2010 International Conference on, pp. 55–60, IEEE, (2010)

  14. Banerjee, S., Mitra, M.: “A classification approach for myocardial infarction using voltage features extracted from four standard ecg leads,” In: Recent Trends in Information Systems (ReTIS), 2011 International Conference on, pp. 325–330, IEEE, (2011)

  15. Safdarian, N., Dabanloo, N.J., Attarodi, G.: A new pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ecg signal. J. Biomed. Sci. Eng. 7(10), 818 (2014)

    Article  Google Scholar 

  16. Acharya, R., Krishnan, S.M., Spaan, J.A., Suri, J.S.: Advances in Cardiac Signal Processing. Springer, New York (2007)

    Book  MATH  Google Scholar 

  17. Bortolan, G., Christov, I.: “Myocardial infarction and ischemia characterization from t-loop morphology in vcg,” In: Computers in Cardiology 2001, pp. 633–636, IEEE, (2001)

  18. Correa, R., Arini, P.D., Correa, L.S., Valentinuzzi, M., Laciar, E.: Novel technique for st-t interval characterization in patients with acute myocardial ischemia. Comput. Biol. Med. 50, 49–55 (2014)

    Article  Google Scholar 

  19. Dehnavi, A.R.M., Farahabadi, I., Rabbani, H., Farahabadi, A., Mahjoob, M.P., Dehnavi, N.R.: Detection and classification of cardiac ischemia using vectorcardiogram signal via neural network. J. Res. Med. Sci. 16(2), 136–142 (2011)

  20. Yang, H., Bukkapatnam, S.T., Le, T., Komanduri, R.: Identification of myocardial infarction (mi) using spatio-temporal heart dynamics. Med. Eng. Phys. 34(4), 485–497 (2012)

    Article  Google Scholar 

  21. Lemire, D., Pharand, C., Rajaonah, J., Dube, B., LeBlanc, A.R.: Wavelet time entropy, t wave morphology and myocardial ischemia. IEEE Trans. Biomed. Eng. 47, 967–970 (2000)

    Article  Google Scholar 

  22. Oeff, M., Koch, H., Bousseljot, R., Kreiseler, D.: “The ptb diagnostic ecg database,” National Metrology Institute of Germany, http://www.physionet.org/physiobank/database/ptbdb, (2012)

  23. Tripathy, R., Dandapat, S.: Detection of cardiac abnormalities from multilead ecg using multiscale phase alternation features. J. Med. Syst. 40(6), 1–9 (2016)

    Article  Google Scholar 

  24. Peker, M., Sen, B., Delen, D.: A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE J. Biomed. Health Inf. 20(1), 108–118 (2016)

    Article  Google Scholar 

  25. Peker, M.: A new approach for automatic sleep scoring: combining taguchi based complex-valued neural network and complex wavelet transform. Comput. Methods Progr. Biomed. 129, 203–216 (2016)

    Article  Google Scholar 

  26. Sharma, L., Dandapat, S., Mahanta, A.: Kurtosis-based noise estimation and multiscale energy to denoise ecg signal. Signal Image Video Process. 7(2), 235–245 (2013)

  27. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  28. Das, A.B., Bhuiyan, M.I.H., Alam, S.S.: Classification of eeg signals using normal inverse gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. Signal Image Video Process. 10(2), 259–266 (2016)

    Article  Google Scholar 

  29. Tripathy, R., Sharma, L., Dandapat, S.: Detection of shockable ventricular arrhythmia using variational mode decomposition. J. Med. Syst. 40(4), 1–13 (2016)

    Article  Google Scholar 

  30. Balouchestani, M., Raahemifar, K., Krishnan, S.: Low sampling rate algorithm for wireless ecg systems based on compressed sensing theory. Signal Image Video Process. 9(3), 527–533 (2015)

    Article  Google Scholar 

  31. Jayachandran, E., et al.: Analysis of myocardial infarction using discrete wavelet transform. J. Med. Syst. 34(6), 985–992 (2010)

    Article  Google Scholar 

  32. Tipping, M.E.: “Sparse bayesian learning and the relevance vector machine”. J. Mach. Learn. Res. 1(Jun), 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Tipping, M.: “Relevance vector machine.”. US Patent 6,633,857, 14 Oct 2003

  34. Demir, B., Erturk, S.: Hyperspectral image classification using relevance vector machines. IEEE Geosci. Remote Sens. Lett. 4(4), 586–590 (2007)

    Article  Google Scholar 

  35. Sim, J., Wright, C.C.: The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys. Ther. 85(3), 257–268 (2005)

    Google Scholar 

  36. Pan, J., Tompkins, W.J.: “A real-time qrs detection algorithm”. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  37. Fay, M.P., Proschan, M.A.: Wilcoxon–mann–whitney or t-test? on assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 4, 1 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Correa, R., Arini, P.D., Correa, L., Valentinuzzi, M.E., Laciar, E.: Acute myocardial ischemia monitoring before and during angioplasty by a novel vectorcardiographic parameter set. J. Electrocardiol. 46(6), 635–643 (2013)

    Article  Google Scholar 

  39. Correa, R., Arini, P.D., Valentinuzzi, M.E., Laciar, E.: Novel set of vectorcardiographic parameters for the identification of ischemic patients. Med. Eng. Phys. 35(1), 16–22 (2013)

    Article  Google Scholar 

  40. Hedén, B., Öhlin, H., Rittner, R., Edenbrandt, L.: Acute myocardial infarction detected in the 12-lead ecg by artificial neural networks. Circulation 96(6), 1798–1802 (1997)

    Article  Google Scholar 

  41. Sun, L., Lu, Y., Yang, K., Li, S.: Ecg analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12), 3348–3356 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Tripathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, R.K., Dandapat, S. Detection of myocardial infarction from vectorcardiogram using relevance vector machine. SIViP 11, 1139–1146 (2017). https://doi.org/10.1007/s11760-017-1068-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1068-9

Keywords

Navigation