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Abstract High Dynamic Range (HDR) photography

involves fusing a bracket of images taken at different

exposure settings in order to compensate for the low

dynamic range of digital cameras such as the ones used

in smartphones. In this paper, a method for automat-

ically selecting the exposure settings of such images

is introduced based on the camera characteristic func-

tion. In addition, a new fusion method is introduced

based on an optimization formulation and weighted av-

eraging. Both of these methods are implemented on a

smartphone platform as an HDR app to demonstrate

the practicality of the introduced methods. Compari-

son results with several existing methods are presented

indicating the effectiveness as well as the computational

efficiency of the introduced solution.

Keywords Automatic exposure selection · High

Dynamic Range photography on smartphones ·
exposure bracketing

1 Introduction

Many camera sensors, in particular the ones used in

smartphones, have limited dynamic or contrast ranges.

High Dynamic Range (HDR) techniques allow compen-

sating for low dynamic ranges of such sensors by cap-

turing a number of images at different exposures, called

an exposure bracket, and by fusing these images to form

an HDR image [1], [2].

Although an exposure bracket may contain many im-

ages taken at different exposure settings, Barakat et

R. Pourreza-Shahri
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al. [3] showed that in most cases, an exposure bracket

consisting of three images is adequate for capturing the

full contrast of a scene. Exposure bracketing is thus nor-

mally done by taking three images with one taken at

the auto-exposure (AE ) setting together with a brighter

looking image and a darker looking image taken at

EVAE ± n exposure settings, where n is manually se-

lected or is a user-specified exposure level. An auto-

matic exposure selection method makes it possible to

generate HDR images without requiring users to se-

lect the exposure level n. Automatic exposure selection

methods in the literature can be grouped into two ma-

jor categories: scene irradiance-based methods [3], [4]

and ad-hoc methods [5]-[7].

Fusion approaches in the literature can also be placed

into one of these two major categories: (i) irradiance

mapping [8] followed by tonal mapping, and (ii) direct

exposure fusion [9]. Tonal mapping methods work ei-

ther globally or locally. Global tonal mapping methods,

e.g. [10], use a monotonically increasing curve to com-

press an irradiance map. Such methods do not retain

local image details. On the other hand, local tonal map-

ping methods retain local image details. Recent tonal

mapping algorithms, e.g. [11]-[13], decompose the lumi-

nance of an irradiance map image into a base layer and

a detail layer where the base layer consists of large scale

variations and the detail layer of small scale variations.

Direct exposure fusion methods, e.g. [14]-[20], use local

image characteristics to generate weight maps and then

fuse bracket images using such maps. It is worth not-

ing that some exposure fusion works have addressed the

generation of HDR images in the presence of changing

scenes [21], [22].

In this paper, a new HDR photography method for

scenes that remain static during the time different ex-

posures are captured is introduced and implemented
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Fig. 1 Automatic exposure selection steps

on smartphones. This method consists of two parts:

exposure selection and exposure fusion. In the expo-

sure selection part, the scene is analyzed to determine

three exposure times automatically for under-exposed,

normal-exposed, and over-exposed images. These im-

ages are then blended or fused in the exposure fusion

part using an optimization framework and weighted av-

eraging.

The rest of the paper is organized as follows. In sections

2 and 3, the exposure selection and the exposure fusion

parts are described, respectively. Section 4 provides the

smartphone implementation or app for generating HDR

images. The results and comparisons with several exist-

ing methods are then presented in section 5 and finally

the paper is concluded in section 6.

2 Automatic Exposure Selection Method

Exposure bracketing involves the use of three images:

a normal-exposed image (INE), an over-exposed image

(IOE) and an under-exposed image (IUE). The expo-

sure selection method we introduced in [7] has been

employed here for the smartphone implementation. The

steps to find optimal exposure deviations about the nor-

mal exposure are shown in Fig. 1.

Initially, all the camera parameters are set to auto-

matic and an auto-exposed image Iin is captured. The

luminance of Iin is clustered into dark, normal, and

bright regions. These regions represent under-exposed,

well-exposed, and over-exposed parts of the image, re-

spectively. The optimal exposure times are then ob-

tained in order to make the dark, the normal, and the

bright regions of Iin better exposed in IOE , INE , and

IUE , respectively. Unlike the conventional automatic

exposure methods that consider a linear relationship

between the exposure time and the brightness level, in

this work the camera characteristic function is used to

establish this relationship and the exposure times are

found by mapping the gray-level means of the clustered

regions to the optimal gray level (usually 128 for 256-

level images). More details of the exposure selection

process are provided in [7].

3 Fusion Method to Generate HDR Images

This section describes the fusion of the images IUE ,

INE , and IOE , using an algorithm described in the next

subsections. Let YUE , CbUE , CrUE , YNE , CbNE ,

CrNE , YOE , CbOE , CrOE , Y, Cb, Cr represent the

Y, Cb, and Cr components of the images IUE , INE ,

IOE , and the fused or output image, respectively. Fu-

sion is conducted for the luminance and chrominance

component separately as described in the following two

subsections.

3.1 Luminance fusion

Here gradient information is used to guide the lumi-

nance fusion. The rationale behind using gradient infor-

mation is that a well-exposed image provides a better

representation of edges, that is to say it provides higher

gradient values compared to a poorly-exposed image

[17]. The gradients are extracted from the well-exposed

regions of YUE , YNE , and YOE and merged into gra-

dient maps along the horizontal (Λh) and vertical (Λv)

directions. An initial estimate (X) of the fused lumi-

nance (Y) is also obtained by averaging YUE , YNE ,

and YOE . Using the extracted gradients and the initial

estimate, the fused luminance (Y) is devised by solving

the optimization problem that is stated below.

Ŷ = argminY

{
‖Y−X‖2F + λ‖∇hY−Λh‖2F+

λ‖∇vY−Λv‖2F
} (1)

where ‖.‖2F denotes the Frobenius matrix norm, ∇h
and ∇v indicate the horizontal and vertical gradient

operators, and λ is a weighting parameter. The solution

to this optimization problem is given by (see Appendix

A):

Ψ̂u,v =
F{X}u,v+λF{∇h}†u,vF{Λh}u,v+F{∇

v}†u,vF{Λv}u,v
1+λ‖F{∇h}u,v‖2+λ‖F{∇v}u,v‖2

Ŷ = F−1
{
Ψ̂
} (2)

where u and v are the pixel coordinates, F and F−1
denote the forward and inverse Fourier transforms, re-

spectively, and † denotes complex conjugate.

For luminance fusion, the images YUE , YNE , and YOE ,

are available and the output image Y is estimated. As

stated earlier, X, Λh and Λv are obtained from the

available image data in the solution provided in (2) to

estimate Y. In this work, the initial estimate X is cho-

sen to be the average of the images captured at different

exposure settings because the average luminance con-

veys the brightness of a scene as illustrated in Fig. 2.

In other words, X is set to be

X = (YOE + YNE + YUE)/3 (3)
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Fig. 2 Top row from left to right: under-exposed, normal-
exposed, and over-exposed images. Bottom row: average im-
age.

The horizontal (Λh) and the vertical (Λv) gradi-

ents are extracted from the luminance components us-

ing the clustering outcome obtained in the exposure

selection step. In other words, the gradient in the dark,

normal, and bright regions is obtained from the over-

exposed, normal-exposed, and under-exposed images,

respectively. For this purpose, three binary cluster maps

(R) are generated which correspond to the three clus-

ters obtained from the exposure selection step . For a

pixel k of Iin, if its gray-level belongs to the cluster

1, 2, or 3 (specified by the dark, normal, and bright

areas, respectively), then the corresponding pixel in

RUE , RUE , or RUE is set to 1, where RUE , RNE ,

and ROE represent the binary cluster maps for the

under-exposed, normal-exposed, and over-exposed clus-

ters, respectively. Hence, for a pixel k

Rk
UE =

{
1, CIkin

= 1

0, otherwise

Rk
NE =

{
1, CIkin

= 2

0, otherwise

Rk
OE =

{
1, CIkin

= 3

0, otherwise

(4)

where CIkin
denotes the cluster label of the kth pixel

of Iin. Then, Λh and Λv for the pixel k are computed

as follows:

Λk
h = Rk

UE

(
∇hYOE

)k
+ Rk

NE

(
∇hYNE

)k
+

Rk
OE

(
∇hYUE

)k
Λk
v = Rk

UE

(
∇vYOE

)k
+ Rk

NE +
(
∇vYNE

)k
+

Rk
OE

(
∇vYUE

)k (5)

The method described above causes sharp transi-

tions on cluster borders since image gradients get mul-

tiplied by binary cluster maps. In order to avoid such

sharp transitions, a low-pass filter is applied to every

binary map. Here, the so-called guided filter [13] is ap-

plied to the binary masks to make transitions of clus-

ter borders smooth. In other words, the smooth cluster

maps (Ω) for the three clusters are obtained as follows:

ΩUE = guided filter(X,RUE , r, ε)

ΩNE = guided filter(X,RNE , r, ε)

ΩOE = guided filter(X,ROE , r, ε)

(6)

where X acts as a guide and r and ε indicate the

filter parameters. The smoothed cluster maps are then

normalized. The normalized weights for a pixel k are

computed this way

ωkUE = Ωk
UE

/(
Ωk
UE + Ωk

NE + Ωk
OE

)
ωkNE = Ωk

NE

/(
Ωk
UE + Ωk

NE + Ωk
OE

)
ωkOE = Ωk

OE

/(
Ωk
UE + Ωk

NE + Ωk
OE

) (7)

Once the normalized weights are computed, Λh and

Λv are obtained as follows:

Λk
h = ωkUE

(
∇hYOE

)k
+ ωkNE

(
∇hYNE

)k
+

ωkOE
(
∇hYUE

)k
Λk
v = ωkUE

(
∇vYOE

)k
+ ωkNE

(
∇vYNE

)k
+

ωkOE
(
∇vYUE

)k (8)

X, Λh and Λv computed via (3) and (8) are then

inserted into (2) to obtain Y.

3.2 Chrominance fusion

Unlike the luminance component, chrominance fusion

is achieved through weighted averaging. The saturation

value of a pixel is used as a weight to fuse its chromi-

nance components. The saturation s for a pixel k with

red, green, and blue components of rk, gk, bk is com-

puted this way

ρk = (rk + gk + bk)/3

sk =
√

(rk − ρk)2 + (gk − ρk)2 + (bk − ρk)2
(9)

Let skUE , skNE , and skOE represent the saturation of

the pixel k in IUE , INE , and IOE , respectively. The

normalized weights are obtained as follows:

$k
UE = skUE

/(
skUE + skNE + skOE

)
$k
NE = skNE

/(
skUE + skNE + skOE

)
$k
OE = skOE

/(
skUE + skNE + skOE

) (10)
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Algorithm 1 Capturing part

Input: None.
Output: Three YCbCr images and binary maps
1. Perform an initial capture
2. Cluster the luminance component of this initial

capture, record the 3 cluster means and generate
three binary maps

3. Initialize three CaptureRequests and set the
CaptureRequest exposure times

4. Initialize a burst CaptureSession with the three
defined CaptureRequests

5. Launch CaptureSession and wait for camera to
acquire the three images

6. Pass the three images together with the three binary
maps through JNI (Java Native Interface) to the C
fusion code

And the chrominance components of the pixel k are

then fused according to these equations:

Cbk = $k
UECbkUE +$k

NECbkNE +$k
OECbkOE

Crk = $k
UECrkUE +$k

NECrkNE +$k
OECrkOE

(11)

4 Smartphone Implementation

A smartphone app is developed in this work to demon-

strate the practicality aspect of the introduced auto-

matic exposure selection and fusion methods. This app

is developed for smartphones running Android operat-

ing system by utilizing the following software tools: An-

droid Studio and Android Native Development Kit (An-

droid NDK) which allows incorporating C/C++ codes

into Android Studio. The entire processing is divided

into two parts: capturing part, which is done via Java

code, and processing part, which is done via C code.

More details about the two parts are provided in the

following two subsections.

4.1 Capturing

The capturing part involves taking Iin followed by tak-

ing IOE , INE , and IUE . A button named Capture is

provided in the app to launch capturing images. Once

the Capture button is pressed by the user, the capturing

process starts as described in Algorithm 1. The output

of Algorithm 1 consists of three images in the YCbCr

format, corresponding to the under-exposed, normal-

exposed, and over-exposed conditions as well as the

clustering outcome in the form of three binary maps.

Algorithm 2 Fusion part

Input: Three images in YCbCr format and binary maps.
Output: HDR image
1. Fuse luminance component
a. Obtain X via (3)
b. Calculate the horizontal and vertical gradients of

YUE , YNE , and YOE

c. Apply the guided filter to get smooth cluster maps
via (6) and normalize the weights via (7)

d. Acquire the gradients via (8)
e. Estimate Y via (2)

2. Fuse chrominance component
a. Obtain the saturation for each pixel of IOE , INE ,

and IUE via (9) and calculate the normalized
chrominance weights via (10)

b. Calculate Cb, Cr via (11)
3. Combine Y, Cb, and Cr to form the output image

in the YCbCr format and then convert to the RGB
format

4.2 Fusion part

When the three images are made available from the cap-

turing part, the processing outlined in section 3, which

is coded in C, is performed and an HDR image as de-

scribed in Algorithm 2 is generated. This image is then

sent back to the Java environment for getting saved in

memory.

5 Results and Discussion

This section provides the results of the experimenta-

tions conducted to evaluate the introduced automatic

exposure selection and fusion methods for generating

HDR images.

An Android app was designed to capture 34 images

of a scene at 8M size and fixed ISO, fixed lens posi-

tion, with the auto-white-balance enabled, across dif-

ferent exposure times. 34 exposure times varying from

0.5 sec to 1/4000 sec in steps of 1/3 standard expo-

sure value were used to generate a ground-truth irra-

diance map image (HDRref ) of the scene using the

method introduced in [8]. The above process was re-

peated for 10 different indoor and outdoor scenes. The

complete dataset is made available for public use at

http://www.utdallas.edu/∼kehtar/ImageEnhancement/

HDR/Scenes.

The first set of experiments mentioned next addressed

selecting the optimal parameters while the second and

third sets of experiments addressed the performance

and the results obtained by a modern smartphone, re-

spectively.

http://www.utdallas.edu/~kehtar/ImageEnhancement/HDR/Scenes
http://www.utdallas.edu/~kehtar/ImageEnhancement/HDR/Scenes
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Fig. 3 TMQI vs. scale sλ

5.1 Parameter selection

The parameters of the exposure fusion part included

the regularization parameter λ of the optimization in

(2), as well as the guided filter parameters, i.e. the fil-

ter radius r and the regularization parameter ε in (6).

For the guided filter, since maximal smoothing within

short distances was desired, the minimal value of 1 for

r together with a large value of 1 for ε were considered.

The kernels [−1, 1] and [−1, 1]T were used as the hori-

zontal and vertical gradient operators, respectively.

The experiments revealed that the optimal λ was highly

dependent on the image size. To address this issue, re-

sized copies of the images were generated by scaling

the dimension from 0.1 to 1 in steps of 0.1. The fusion

algorithm was then applied to all the images, the orig-

inal images and resized ones. λ was varied according

to (12) and the widely used image quality measure of

Tone-Mapped Quality Index TMQI [23] was computed

for every λ ,

λ = SIZE/2sλ , sλ = −2,−1, . . . , 5 (12)

where SIZE denotes the diameter of the input im-

age and sλ is a scaling factor. The average TMQI over

all the images for different scale values is shown in

Fig. 3. This figure indicates that the scale value of 2 gen-

erated the best TMQI. Hence, λ was set to λ = SIZE/4

for the subsequent experimentations.

Furthermore, in order to gain computational effi-

ciency, another experiment was conducted by applying

the guided filtering operation to the down-sampled bi-

nary maps (instead of the original size) and TMQI was

recomputed. The binary cluster maps were scaled to a

smaller size, after applying the guided filter, the filter-

ing outcome was rescaled to the original size. All the

other steps of the exposure fusion were kept the same.

The dimensions of the binary cluster maps were lowered

as follows:

SCALE = 1/2sg , sg = 0, 1, . . . , 4 (13)

where SCALE denotes the down-sampling ratio and

sg represents a scaling factor. The average TMQI over

Fig. 4 TMQI vs. scale sg

all the images for different sg values is shown in Fig. 4.

As can be seen from this figure, TMQI dropped mono-

tonically as sg was increased. However, since the de-

crease in TMQI was more as sg varied from 3 to 4 com-

pared to the previous decreases, sg = 3 was chosen in

the smartphone app. In other words, for computational

efficiency reasons on a smartphone platform, the binary

clustered maps were down-sampled with a factor of 8

before applying the guided filter.

5.2 Comparison

This section provides objective and subjective compar-

isons with several representative existing methods. The

method introduced in this paper, named OB, together

with iCam [10], Weighted Least Squares (WLS) [11],

Guided Filtering (GF) [13], and Exposure Fusion (EF)

[14] methods were applied to the image sequences. Sam-

ple image sequences as well as the corresponding fusion

results are displayed in Fig. 5. As can be seen from

Figs. 5 (c) and (d), the fusion results using the EF and

OB methods were found to be better compared to the

other methods. However, the light region in Fig. 5 (c)

appeared over-exposed and the wall region above the

light in Fig. 5 (d) lost some color information when us-

ing the EF method whereas these effects did not occur

when using the OB method.

The TMQI measure averaged over all the 10 scenes

are provided in Fig. 6. As can be seen from this figure,

the performance of the EF and OB methods were found

comparable and higher than those of the other methods.

The processing times of the aforementioned meth-

ods were measured by applying them to the images in

the dataset resized to 1 megapixels. These times were

found to be 2.67, 22.61, 1.07, 2.37, and 0.99 seconds

for the iCam, WLS, GF, EF, and OB methods, respec-

tively, when using a 2.66 GHz machine with all the

methods coded in Matlab. It is also worth mentioning

that the processing times for the iCam, WLS, and GF

methods, which all fall under the tonal mapping cat-

egory of HDR, only reflect the time associated with

the tonal mapping and do not include the time asso-
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Fig. 5 Sample results, (a) sequence 1, (b) sequence 2, from left to right: under-exposed, normal-exposed, and over exposed,
(c) HDR image for sequence 1, (d) HDR image for sequence 2, from left to right: iCam, WLS, GF, EF, OB.

Fig. 6 TMQI for the scenes together with the average TMQI

ciated with the scene irradiance map generation. Since

the TMQI measure for the iCam, WLS, and GF meth-

ods was found to be lower compared to those for the

EF and OB methods, the processing time comparison

was limited to the EF and OB methods which is stated

below.

The computational complexities of the EF and OB meth-

ods are C1O
(
N2log(N)

)
and C2O

(
N2log(N)

)
, respec-

tively, where C1 and C2 denote constants and N de-

notes the image size (height or width). Although the

two methods have the same big O, the constants C1

and C2 have a noticeable impact on the processing

time as N increases. Fig. 7 shows the average process-

ing times of the EF and OB methods over the resized

versions of the captured scenes in terms of the image

size expressed in pixels. The processing times were mea-

sured for N=64, 128, 256, 512, 1024, 2048. In addition,

C1N
2log(N) and C2N

2log(N) curves were fitted to the

processing times thus generating the values of 8.47e-8

and 2.25e-7 for the constants C1 and C2, respectively.

As can be seen from this figure, the two dashed lines fit

the processing times closely. As a result, the processing

time of the OB method is on average C2/C1 = 0.37 that

of the EF method, that is the OB method is about 60%

faster than the EF method. More computational gain

can be achieved noting that the Fourier transforms of

∇h and ∇v in (2) are input image-independent and can

be computed offline and stored in memory.

Although the introduced solution is intended for use

in scenes that do not change during the time that differ-

ent exposure images are captured, the exposure selec-

tion and capturing parts are designed and implemented

in such a way that there is minimal delay in capturing

the three exposure images. Thus, in practice, one ex-

periences little or no misalignments between the three

exposure images because of possible changes that may

occur in a scene. Furthermore, the exposure fusion part

is tolerant to slight misalignments since it extracts the

fusion information locally from the auto-exposed image
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Fig. 7 Running time comparison

Fig. 8 Misalignment effect; left: EF method, right our OB
method.

rather than the other exposure images. An example of

an HDR image in the presence of misalignments that

are generated by the EF and OB methods is shown in

Fig. 8. As can be seen from this figure, the ghost effect

is noticeable around the cables and the edges of the

monitor and the mouse in the image generated by the

EF method while no ghost artifacts are present in the

image generated by the OB method. It is worth noting

that it is possible to use computationally efficient image

registration techniques, e.g. [4], [24], to align different

exposure images before performing fusion for situations

where severe misalignments may occur.

5.3 Smartphone results

In this subsection, the actual smartphone implementa-

tion outcome of the OB method is reported. This HDR

Fig. 9 Under-exposed, normal-exposed, and over-exposed
images together with their fusion outcome.

app can be downloaded from http://www.utdallas.edu/

∼kehtar/HDRApp.apk and run on an Android smart-

phone. A sample exposure selection and fusion outcome

obtained by running the developed app on a smart-

phone is shown in Fig. 9 together with the correspond-

ing under-exposed, normal-exposed, and over-exposed

images.

The average processing time for images of size 768×
1024 pixels on a modern smartphone was found to be

about 1.8s. Note that the intention here has been to

show the practicality of running the introduced solu-

tion on smartphones. It should be realized that it is

possible to achieve lower processing times as the app

code running on the smartphone does not utilize vector

processing on the NEON coprocessor present on nearly

all modern smartphones.

6 Conclusion

A method for automatic exposure selection and a method

for fusion of exposure bracket images were introduced in

this paper. The exposure selection was done by analyz-

ing the brightness of a scene via clustering and the cam-

era characteristic function. For exposure fusion, the lu-

minance and chrominance of three bracket images were

blended via an optimization formulation and weighted

averaging, respectively. The smartphone implementa-

tion and comparisons with the existing methods have

shown the practicality and performance of the intro-

duced solution.

http://www.utdallas.edu/~kehtar/HDRApp.apk
http://www.utdallas.edu/~kehtar/HDRApp.apk
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A Optimization Solution

This appendix provides the solution of the optimization prob-
lem with only one gradient term. The derivation for two terms
is straightforward and not included here to save space. The
optimization formulation for one gradient term is given by

Ŷ = argminY

{
‖Y−X‖2F + λ‖∇Y−Λ‖2F

}
(14)

where Λ represents the gradient of Y and ∇ indicates
the gradient operator. In vector form, Equation (14) can be
written as:

ŷ = argminy

{
‖y− x‖2 + λ‖Cy− δ‖2

}
(15)

where y, x, and δ represent the column vector versions of
Y, X, and Λ, respectively, and C denotes the block-circulant
matrix representation of ∇. By taking the derivative with
respect to y, the following solution is obtained

ŷ =
(
I + λCTC

)−1(
x + λCT δ

)
(16)

where I denotes the identity matrix. Since C is a block-
circulant matrix, it can be represented in diagonal form as:

C = WEW−1 (17)

where E is the diagonal version of C and W is the DFT
(Discrete Fourier Transform) operator. The diagonal values
of E correspond to the DFT coefficients of ∇ (∇ should be
zero-padded properly before applying DFT). Hence, (16) can
be rewritten as:

ŷ =
(
I + λWE†EW−1

)−1(
x + λWE†W−1δ

)
(18)

By multiplying both sides of (18) by W−1, the following
equation is resulted

W−1ŷ =
(
I + λE†E

)−1(
W−1x + λE†W−1δ

)
(19)

Since W−1ŷ, W−1x, and W−1δ correspond to the DFT
of ŷ, x, and δ, respectively, (19) can be stated as follows:

F{Ŷu,v} =
F{X}u,v + λF{∇}†u,vF{Λ}u,v

1 + λ‖F{∇}u,v‖2
(20)
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