Skip to main content
Log in

Noise removal from MR images via iterative regularization based on higher-order singular value decomposition

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Despite the success of magnetic resonance imaging techniques in many applications, acquisition noise is still a limiting factor for the quality and hence the usefulness of the techniques. In this paper, a new algorithm for denoising magnetic resonance images based on higher-order singular value decomposition is proposed. The proposed algorithm first forms a single tensor from the noisy data. Next, higher-order singular value decomposition is applied on this tensor with respect to a set of learned orthogonal directional matrices over the corresponding tensor mode. Finally, soft thresholding is iteratively applied to the calculated coefficients, thereby suppressing the noise. The new algorithm is further enhanced with a post-process Wiener filtering. The proposed algorithm has two advantages over existing tensor denoising approaches: (1) It combines the noisy image slices into a single tensor, thereby exploiting non-local image similarity across slices and (2) it uses an iterative regularization framework to suppress the noise. Experiments are conducted on synthetic and real magnetic resonance images to compare the performance of the proposed algorithm to state-of-the-art denoising approaches. The comparison is made quantitatively in terms of peak of signal-to-noise ratio, structural similarity index and mean absolute difference, and qualitatively through visual comparisons. The results demonstrate the competitive performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rodriguez, A.O.: Principles of magnetic resonance imaging. Rev. Mex. Fis. 50(3), 272–286 (2004)

    Google Scholar 

  2. Wright, G.A.: Magnetic resonance imaging. IEEE Signal Process. Mag. 14(1), 56–66 (1997)

    Article  MathSciNet  Google Scholar 

  3. Zhu, H., Li, Y., Ibrahim, J.G., Shi, X., An, H., Chen, Y., Gao, W., Lin, W., Rowe, D.B., Peterson, B.S.: Regression models for identifying noise sources in magnetic resonance images. J. Am. Stat. Assoc. 104(486), 623–637 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Article  Google Scholar 

  5. Rajan, J., Poot, D., Juntu, J., Sijbers, J.: Noise measurement from magnitude MRI using local estimates of variance and skewness. Phys. Med. Biol. 55(16), 441–449 (2010)

    Article  Google Scholar 

  6. Mohan, J., Krishnaveni, V., Guo, Y.: A survey on the magnetic resonance image denoising methods. Biomed. Signal Process. Control 9, 56–69 (2014)

    Article  Google Scholar 

  7. Krissian, K., Fernandez, S.A.: Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 18(10), 2265–2274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, F., Ma, L.: MRI denoising using the anisotropic coupled diffusion equation. In: Proceedings of IEEE 3rd International Conference on Biomedical Engineering and Informatics, pp. 397–401 (2010)

  9. Heydari, M., Karami, M.R., Babakhani, A.: A new adaptive coupled diffusion PDE for MRI Rician noise. Signal Image Video Process. 10(7), 1211–1218 (2016)

    Article  Google Scholar 

  10. Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise non local means denoising filter for 3D magnetic resonance image. IEEE Trans. Med. Image Process. 27(4), 425–441 (2008)

    Article  Google Scholar 

  11. Manjon, J.V., Coupe, P., Marti-Bonmati, L., Collions, D.L., Robels, M.: Adaptive nonlocal means denoising of MR images with spatially varying noise levels. Magn. Reson. Image 31(1), 192–203 (2010)

    Article  Google Scholar 

  12. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sharif, M., Hussain, A., Jaffar, M.A., Choi, T.S.: Fuzzy-based hybrid filter for Rician noise removal. Signal Image Video Process. 10(2), 215–224 (2016)

    Article  Google Scholar 

  14. Riji, R., Rajan, J., Sijbers, J., Nair, M.S.: Iterative bilateral filter for Rician noise reduction in MR images. Signal Image Video Process. 9(7), 1543–1548 (2015)

    Article  Google Scholar 

  15. Sudeep, P.V., Palanisamy, P., Kesavadas, C., Rajan, J.: Nonlocal linear minimum mean square error methods for denoising MRI. Biomed. Signal Process. Control 20, 125–134 (2015)

    Article  Google Scholar 

  16. Mohan, J., Krishnaveni, V., Guo, Y.: MRI denoising using nonlocal neutrosophic set approach of wiener filtering. Biomed. Signal Process. Control 8, 779–791 (2013)

    Article  Google Scholar 

  17. Wang, Y., Che, X., Ma, S.: Nonlinear filtering based on 3D wavelet transform for MRI. EURASIP J Adv. Signal. Process. 1, 40 (2012)

    Article  Google Scholar 

  18. Anand, C.S., Sahambi, J.S.: Wavelet domain nonlinear filtering for MRI denoising. Magn. Reson. Image 28(6), 842–861 (2010)

    Article  Google Scholar 

  19. Ma, J., Plonka, G.: Combined curvelet shrinkage and nonlinear anisotropic diffusion. IEEE. Trans. Image Process. 16(9), 2198–2206 (2007)

    Article  MathSciNet  Google Scholar 

  20. Manjon, J.V., Coupe, P., Buades, A., Collins, D.L., Robles, M.: New methods for MRI denoising based on sparseness and self similarity. Med. Image Anal. 16(1), 18–27 (2012)

    Article  Google Scholar 

  21. Fernandez, S.A., Lopez, C.A., Westin, C.F.: Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approaches. IEEE Trans. Image Process. 17(8), 1383–1398 (2008)

    Article  MathSciNet  Google Scholar 

  22. Rajan, J., Veraart, J., Audekerke, J.V., Verhoye, M., Sijbers, J.: Nonlocal maximum likelihood estimation method for denoising multiple coil magnetic resonance images. Magn. Reson. Image 30(10), 1512–1518 (2012)

    Article  Google Scholar 

  23. Rajan, J., Jeurissen, B., Verhoye, M., Audekerke, J.V., Sijbers, J.: Maximum likelihood estimation-based denoising of magnetic resonance images using restricted local neighborhoods. Phys. Med. Biol. 56(16), 5221–5223 (2011)

    Article  Google Scholar 

  24. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform domain collaborative filtering. IEEE. Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  25. Tofighi, M., Kose, K., Cetin, A.E.: Denoising images corrupted by impulsive noise using projections onto the epigraph set of the total variation function (PES-TV). Signal Image Video Process. 9(1), 41–48 (2015)

    Article  Google Scholar 

  26. Elahi, P., Beheshti, S., Hashemi, M.: BM3D MRI denoising equipped with noise invalidation technique. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6612–6616 (2014)

  27. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2013)

    Article  MathSciNet  Google Scholar 

  28. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: Multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kolda, T.G., Bader, B.W.: Tensor decomposition and application. J. SIAM Rev. 51(3), 455–500 (2009)

  30. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)

    Article  Google Scholar 

  31. Goldfarb, D., Qin, Z.: Robust low-rank tensor recovery: models and algorithms. SIAM J. Matrix Anal. Appl. 35, 225–253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Signoretto, M., Dinh, Q.T., Lathauwer, L., Suykens, J.A.K.: Learning with tensors: a framework based on convex optimization and spectral regularization. Mach. Learn. 94(3), 303–351 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 849–862 (2013)

    Article  Google Scholar 

  34. Zhang, X., Xu, Z., Jia, N., Yang, W., Feng, Q., Chen, W., Feng, Y.: Denoising of 3D magnetic resonance images by using higher order singular value decomposition. Med. Image Anal. 19(1), 75–86 (2015)

    Article  Google Scholar 

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  36. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, J., Osher, S.: Iterative regularization and nonlinear inverse scale space applied to wavelet based denoising. IEEE Trans. Image Process. 16(2), 534–544 (2007)

    Article  MathSciNet  Google Scholar 

  38. Cai, J.F., Candes, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Candes, E.J., Plan, Y.: Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2010)

    Article  Google Scholar 

  40. Foi, A.: Noise estimation and removal in MR imaging: the variance-stabilization approach, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1809–1814 (2011)

  41. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2013)

    Article  MathSciNet  Google Scholar 

  42. Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Image 17, 463–468 (1998)

    Article  Google Scholar 

  43. OsiriX. DICOM sample image sets repository. http://www.osirix-viewer.com, http://pubimage.hcuge.ch:8080

  44. The Open Access Series of Imaging Studies. http://www.oasis-brains.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Faegheh Yeganli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeganli, S.F., Demirel, H. & Yu, R. Noise removal from MR images via iterative regularization based on higher-order singular value decomposition. SIViP 11, 1477–1484 (2017). https://doi.org/10.1007/s11760-017-1110-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1110-y

Keywords

Navigation