Skip to main content
Log in

Robust proportionate adaptive filter based on maximum correntropy criterion for sparse system identification in impulsive noise environments

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Proportionate-type adaptive filtering (PtAF) algorithms have been successfully applied to sparse system identification. The major drawback of the traditional PtAF algorithms based on the mean square error (MSE) criterion show poor robustness in the presence of impulsive noises or abrupt changes because MSE is only valid and rational under Gaussian assumption. However, this assumption is not satisfied in most real-world applications. To improve its robustness under non-Gaussian environments, we incorporate the maximum correntropy criterion (MCC) into the update equation of the PtAF to develop proportionate MCC (PMCC) algorithm. The mean and mean square convergence performance analysis are also performed. Simulation results in sparse system identification and echo cancellation applications are presented, which demonstrate that the proposed PMCC exhibits outstanding performance under the impulsive noise environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad hoc Netw. 3(3), 257–279 (2005)

    Article  Google Scholar 

  2. Liang, J., Zhang, M., Zeng, X., et al.: Distributed dictionary learning for sparse representation in sensor networks. IEEE Trans. Image Process. 23(6), 2528–2541 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Forni, F., Galeani, S., Nešić, D., et al.: Event-triggered transmission for linear control over communication channels. Automatica 50(2), 490–498 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liang, J., Zhang, M., Liu, D., et al.: Robust ellipse fitting based on sparse combination of data points. IEEE Trans. Image Process. 22(6), 2207–2218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Gu, Y., Hero A. O.: Sparse LMS for system identification, In: ICASSP Conference, pp. 3125–3128 (2009)

  6. Gu, Y., Jin, J., Mei, S.: l0 norm constraint LMS algorithm for sparse system identification. IEEE Signal Process. Lett. 16(9), 774–777 (2009)

    Article  Google Scholar 

  7. Aliyu, M.L., Alkassim, M.A., Salman, M.S.: A p-norm variable step-size LMS algorithm for sparse system identification. Signal Image Video Process. 9(7), 1559–1565 (2015)

    Article  Google Scholar 

  8. Jahromi, M.N.S., Salman, M.S., Hocanin, A., et al.: Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification. Signal Image Video Process. 9(6), 1353–1356 (2015)

    Article  Google Scholar 

  9. Duttweiler, D.L.: Proportionate normalized least-mean-squares adaptation in echo cancellers. IEEE Trans. Speech Audio Process. 8(5), 508–518 (2000)

    Article  Google Scholar 

  10. Deng, H., Doroslovački, M.: Proportionate adaptive algorithms for network echo cancellation. IEEE Trans. Signal Process. 54(5), 1794–1803 (2006)

    Article  MATH  Google Scholar 

  11. Das, R.L., Chakraborty, M.: On convergence of proportionate-type normalized least mean square algorithms. IEEE Trans. Circuits Syst. II Express. Briefs 62(5), 491–495 (2015)

    Article  Google Scholar 

  12. Haddad, D.B., Petraglia, M.R.: Transient and steady-state MSE analysis of the IMPNLMS algorithm. Digit. Signal Process. 33, 50–59 (2014)

    Article  Google Scholar 

  13. Jelfs, B., Mandic, D.P.: A unifying framework for the analysis of proportionate NLMS algorithms. Int. J. Adapt. Control Signal Process. 29(9), 1073–1085 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sayin, M.O., Yilmaz, Y., Demir, A., et al.: The Krylov-proportionate normalized least mean fourth approach: formulation and performance analysis. Signal Process. 109, 1–13 (2015)

    Article  Google Scholar 

  15. Nikias, C.L., Shao, M.: Signal processing with alpha-stable distributions and applications. Wiley, New York (1995)

    Google Scholar 

  16. Zhang, S., Zhang, J.: Enhancing the tracking capability of recursive least p-norm algorithm via adaptive gain factor. Digital Signal Process. 30, 67–73 (2014)

  17. Arikan, O., Cetin, A.E., Erzin, E.: Adaptive filtering for non-Gaussian stable processes. IEEE Signal Process. Lett. 1(11), 163–165 (1994)

    Article  Google Scholar 

  18. Erdogmus, D., Principe, J.C.: An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems. IEEE Trans. Signal Process. 50(7), 1780–1786 (2002)

    Article  Google Scholar 

  19. Wu, Z., Peng, S., Chen, B., Zhao, H., Principe, J.C.: Proportionate minimum error entropy algorithm for sparse system identification. Entropy 17(9), 5995–6006 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, W., Puskal, P.P., Principe, J.C.: Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  21. Singh, A., Principe, J. C.: Using correntropy as cost function in adaptive filters, In: IJCNN Conference, pp. 2950–2955 (2009)

  22. Wu, Z., Shi, J., Zhang, X., Ma, W., Chen, B.: Kernel recursive maximum correntropy. Signal Process. 117, 11–26 (2015)

    Article  Google Scholar 

  23. Liang, J., Wang, D., Su, L., et al.: Robust MIMO radar target localization via non-convex optimization. Signal Process. 122, 33–38 (2016)

    Article  Google Scholar 

  24. Ma, W., Chen, B., Duan, J., et al.: Diffusion maximum correntropy criterion algorithms for robust distributed estimation. Digit. Signal Process. 58, 10–19 (2016)

    Article  Google Scholar 

  25. Qu, H., Ma, W., Zhao, J., et al.: Prediction method for network traffic based on maximum correntropy criterion. China Commun. 10(1), 134–145 (2013)

    Article  Google Scholar 

  26. Chalasani, R., Principe, J.C.: Self-organizing maps with information theoretic learning. Neurocomputing 147, 3–14 (2015)

    Article  Google Scholar 

  27. Ma, W., Qu, H., Gui, G., et al.: Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments. J. Franklin Inst. 352(7), 2708–2727 (2015)

    Article  Google Scholar 

  28. Chen, B., Xing, L., Liang, J., Zheng, N., Principe, J.C.: Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 21(7), 880–884 (2014)

    Article  Google Scholar 

  29. Chen, B., Principe, J.C.: Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Process. Lett. 19(8), 491–494 (2012)

    Article  Google Scholar 

  30. Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection. Wiley, New York (2005)

    MATH  Google Scholar 

  31. Das, R.L., Chakraborty, M.: Improving the performance of the PNLMS algorithm using norm regularization. IEEE/ACM Trans. Audio Speech Lang. Process 24(7), 1280–1290 (2016)

    Article  Google Scholar 

  32. Shi, K., Shi, P.: Convergence analysis of sparse LMS algorithms with \(\text{ l }_{1}\)-norm penalty based on white input signal. Signal Process. 90(12), 3289–3293 (2010)

    Article  MATH  Google Scholar 

  33. Papoulis, E.V., Stathaki, T.: A normalized robust mixed-norm adaptive algorithm for system identification. IEEE Signal Process. Lett. 11(1), 5286–5298 (2004)

    Article  Google Scholar 

  34. Shao, M., Nikias, C.L.: Signal processing with fractional lower order moments: stable processes and their applications. Proc. IEEE 81(7), 986–1010 (1993)

    Article  Google Scholar 

  35. Aydin, G., Arikan, O., Cetin, A.E.: Robust adaptive filtering algorithms for \(\alpha \)-stable random processes. IEEE Trans. Circuits Syst. II Analog Digit Signal Process. 46(2), 198–202 (1999)

    Article  MATH  Google Scholar 

  36. Ma, W., Chen, B., Qu, H., et al.: Sparse least mean p-power algorithms for channel estimation in the presence of impulsive noise. Signal Image Video Process. 10(3), 503–510 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (No.2015AA042301), National Natural Science Foundation of China (No.61372152), and the Natural Science Basic Research Program of Shanxi (No.2017JM6033). The authors would like to thank the chief editor, associate editor, and the reviewers for their valuable comments and help, which help us to improve the quality of the manuscript. Furthermore, we would like to give thanks for the JEO assistant handling our manuscript timely.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Zheng, D., Zhang, Z. et al. Robust proportionate adaptive filter based on maximum correntropy criterion for sparse system identification in impulsive noise environments. SIViP 12, 117–124 (2018). https://doi.org/10.1007/s11760-017-1137-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1137-0

Keywords

Navigation