Skip to main content
Log in

Parallel framework for dense disparity map estimation using Hamming distance

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A novel framework for sparse and dense disparity estimation was designed, and the proposed framework has been implemented in CPU and GPU for a parallel processing capability. The Census transform is applied in the first stage, and then, the Hamming distance is later used as similarity measure in the stereo matching stage followed by a matching consistency check. Next, a disparity refinement is performed on the sparse disparity map via weighted median filtering and color K-means segmentation, in addition to clustered median filtering to obtain the dense disparity map. The results are compared with state-of-the-art frameworks, demonstrating this process to be competitive and robust. The quality criteria used are structural similarity index measure and percentage of bad pixels (B) for objective results and subjective perception via human visual system demonstrating better performance in maintaining fine features in disparity maps. The comparisons include processing times and running environments, to place each process into context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Penza, V., Ortiz, J., Mattos, L.S., Forgione, A., De Momi, E.: Dense soft tissue 3D reconstruction refined with super-pixel segmentation for robotic abdominal surgery. Int. J. Comput. Assist. Radiol. Surg. 11, 197–206 (2016)

    Article  Google Scholar 

  2. Wang, C., Palomar, R., Cheikh, F.A.: Stereo video analysis for instrument tracking in image-guided surgery. In: 2014 5th European Workshop on Visual Information Processing (EUVIP 2014), Paris (2014)

  3. Balicki, M., Sznitman, R., Meisner, E., Taylor, R., Hager, G.: Vision-based proximity detection in retinal surgery. IEEE Trans. Biomed. Eng. 59, 2291–2301 (2012)

    Article  Google Scholar 

  4. Ozgunalp, U., Ai, X., Dahnoun, N.: Stereo vision-based road estimation assisted by efficient planar patch calculation. Signal, Image Video Process. 10, 1127–1134 (2016)

    Article  Google Scholar 

  5. Orfanidis, G., Tefas, A., Nikolaidis, N., Pitas, I.: Signal processing: image communication facial image clustering in stereoscopic videos using double spectral analysis. Signal Process. Image Commun. 33, 86–105 (2015)

    Article  Google Scholar 

  6. Huiltron, V.G., Ponomaryov, V.: Robust approach for disparity map estimation based on multilevel decomposition. IEEE Lat. Am. Trans. 14, 2968–2973 (2016)

    Article  Google Scholar 

  7. El Jaafari, I., El Ansari, M., Koutti, L.: Fast edge-based stereo matching approach for road applications. Signal Image Video Process. 11, 267–274 (2017). doi:10.1007/s11760-016-0932-3

    Article  Google Scholar 

  8. Ramos-Diaz, E., Kravchenko, V., Ponomaryov, V.: Efficient 2D to 3D video conversion implemented on DSP. EURASIP J. Adv. Signal Process. 2011, 110 (2011)

    Article  Google Scholar 

  9. Gonzalez-Huitron, V., Ramos-Diaz, E., Kravchenko, V., Ponomaryov, V.: 2D to 3D conversion based on disparity map estimation. In: Lecture Notes in Computer Science, vol. 8827, pp. 982–989 (2014)

  10. Kim, C.G.: Parallel SAD for fast dense disparity map using a shared memory programming. In: Park, H.J.J., Jong, Barolli, L., Xhafa, F., Jeong, H.-Y. (eds.) Information technology convergence: security, robotics, automations and communication, pp. 1055–1060. Springer, Netherlands (2013)

    Chapter  Google Scholar 

  11. Yang, Q., Ji, P., Li, D., Yao, S., Zhang, M.: Fast stereo matching using adaptive guided filtering. Image Vis. Comput. 32, 202–211 (2014)

    Article  Google Scholar 

  12. Zhao, Y., Taubin, G.: Real-time stereo on GPGPU using progressive multi-resolution adaptive windows. Image Vis. Comput. 29, 420–432 (2011)

    Article  Google Scholar 

  13. Ramos-Diaz, E., Gonzalez-Huitron, V., Ponomaryov, V.I., Hernandez-Fragoso, A.: 2D to 3D conversion implemented in different hardware. In: Real-Time Image and Video Processing 2015 (2015)

  14. Makkithaya, U.R.K., Karunakar, A.K.: Anchor-diagonal-based shape adaptive local support region for efficient stereo matching. Signal Image Video Process. 9, 893–901 (2013)

    Google Scholar 

  15. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings of European Conference on Computer Vision, pp. 151–158 (1994)

  16. Humenberger, M., Zinner, C., Weber, M., Kubinger, W., Vincze, M.: A fast stereo matching algorithm suitable for embedded real-time systems. Comput. Vis. Image Underst. 114, 1180–1202 (2010)

    Article  Google Scholar 

  17. Zhang, K., Li, J., Li, Y., Hu, W., Sun, L., Yang, S.: Binary stereo matching. In: 2012 21st International Conference on Pattern Recognition (ICPR), Tsukuba, pp. 356–359 (2012)

  18. Kowalczuk, J., Psota, E.T., Prez, L.C.: Real-time Temporal Stereo Matching using Iterative Adaptive Support Weights. In: 2013 IEEE International Conference on Electro/Information Technology (EIT), Rapid City, SD (2013)

  19. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Asian Conference on Computer Vision (ACCV) (2010)

  20. Einecke, N., Eggert, J.: A two-stage correlation method for stereoscopic depth estimation. In: 2010 International Conference on Digital Image Computing: Techniques and Applications, pp. 227–234 (2010)

  21. Hirschmller, H., Innocent, P.R., Garibaldi, J.: Real-time correlation-based stereo vision with reduced border errors. Int. J. Comput. Vis. 47, 229–246 (2002)

    Article  MATH  Google Scholar 

  22. Psota, E.T., Kowalczuk, J., Mittek, M., Perez, L.C.: MAP disparity estimation using hidden Markov trees. In: 2015 IEEE International Conference on Computer Vision (ICCV), IEEE, Santiago, pp. 2219–2227 (2015)

  23. Hirschmller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008)

    Article  Google Scholar 

  24. Zhang, Q., Xu, L., Jia, J.: 100+ times faster weighted median filter (WMF). In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2830–2837 (2014)

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Member, S., Simoncelli, E.P., Member, S.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  26. Scharstein, D., Hirschmller, H., Kitajima, Y., Krathwohl, G., Nesic, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: German Conference on Pattern Recognition (GCPR 2014), Munster (2014)

  27. Hamzah, R.A., Ibrahim, H., Hassan, A.H.A.: Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation. J. Vis. Commun. Image Represent. 42, 145–160 (2017). doi:10.1016/j.jvcir.2016.11.016

    Article  Google Scholar 

  28. Bricola, J.-C., Bilodeau, M., Beucher, S.: A top-down approach to the estimation of depth maps driven by morphological segmentations. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing: 12th International Symposium, ISMM 2015, Reykjavik, May 27–29, 2015. Proceedings, pp. 122–133. Springer, Cham (2015)

Download references

Acknowledgements

The authors would like to thank Instituto Politcnico Nacional, Consejo Nacional de Ciencia y Tecnologia (Project 220347) and Secretaria de Ciencia, Tecnologia e Innovacion del D.F. (Mexico) for their support in accomplishing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gonzalez-Huitron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Huitron, V., Ponomaryov, V., Ramos-Diaz, E. et al. Parallel framework for dense disparity map estimation using Hamming distance. SIViP 12, 231–238 (2018). https://doi.org/10.1007/s11760-017-1150-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1150-3

Keywords

Navigation