Skip to main content
Log in

Digital image decomposition and contrast enhancement using high-dimensional model representation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Contrast is the difference in brightness and color that makes an object distinguishable. Contrast enhancement (CE) is a technique used to improve the visual quality of an image for human recognition. This study proposes a new methodology called high-dimensional model representation (HDMR) for enhancing contrast in digital images. The novelty of HDMR is that the method first decomposes the image into its dimensions, then represents the image using the superposition of decomposed components and finally enhances contrast in the image by adding certain HDMR components to the representation. HDMR has high performance as a CE technique in both grayscale and color images when compared with some state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bassiou, N., Kotropoulos, C.: Color image histogram equalization by absolute discounting back-off. Comput. Vis. Image Underst. 107, 108–122 (2007)

    Article  Google Scholar 

  2. Cheng, F.C., Huang, S.C.: Efficient histogram modification using bilateral Bezier curve for the contrast enhancement. J. Disp. Technol. 9(1), 44–50 (2013)

    Article  Google Scholar 

  3. Huang, S.C., Yeh, C.H.: Image contrast enhancement for preserving mean brightness without losing image features. Eng. Appl. Artif. Intell. 26(5–6), 1487–1492 (2013)

    Article  Google Scholar 

  4. Sim, K.S., Tso, C.P., Tan, Y.Y.: Recursive sub-image histogram equalization applied to gray scale images. Pattern Recognit. Lett. 28(10), 1209–1221 (2007)

    Article  Google Scholar 

  5. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  6. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electr. 43(1), 1–8 (1997)

    Article  Google Scholar 

  7. Celik, T.: Two-dimensional histogram equalization and contrast enhancement. Pattern Recogn. 45, 3810–3824 (2012)

    Article  Google Scholar 

  8. Stanciu, S.G., Tranca, D.E., D, C.: Contrast enhancement influences the detection of gradient based local invariant features and the matching of their descriptors. J. Vis. Commun. Image Represent. 32, 246–256 (2015)

    Article  Google Scholar 

  9. Huang, L., Zhao, W., Sun, Z., Wang, J.: An advanced gradient histogram and its application for contrast and gradient enhancement. J. Vis. Commun. Image Represent. 31, 86–100 (2015)

    Article  Google Scholar 

  10. Wang, C., Ma, K.: Feature histogram equalization for feature contrast enhancement. J. Vis. Commun. Image Represent. 26, 255–264 (2015)

    Article  Google Scholar 

  11. Celik, T., Tjahjadi, T.: Automatic image equalization and contrast enhancement using Gaussian mixture modeling. IEEE Trans. Image Process. 21(1), 145–156 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, G., Zhao, Y., Ni, R., Li, X.: Contrast enhancement-based forensics in digital images. IEEE Trans. Inf. Forens. Secur. 9(3), 515–525 (2014)

    Article  Google Scholar 

  14. Economopoulos, T.L., Asvestas, P.A., Matsopoulos, G.K.: Contrast enhancement of images using partitioned iterated function systems. Image Vis. Comput. 28, 45–54 (2010)

    Article  Google Scholar 

  15. Kaiqi, H., Zhenyang, W., Qiao, W.: Image enhancement based on the statistics of visual representation. Image Vis. Comput. 23, 51–57 (2005)

    Article  Google Scholar 

  16. Hashemi, S., Kiani, S., Noroozi, N., Moghaddam, M.E.: An image contrast enhancement method based on genetic algorithm. Pattern Recogn. Lett. 31, 1816–1824 (2010)

  17. Kang, B., Jeon, C., Han, D.K., Ko, H.: Adaptive height-modified histogram equalization and chroma correction in ycbcr color space for fast backlight image compensation. Image Vis. Comput. 29, 557–568 (2011)

    Article  Google Scholar 

  18. Nair, M.S., Lakshmanan, R., Wilscy, M., Tatavarti, R.: Fuzzy logic-based automatic contrast enhancement of satellite images of ocean. Signal Image Video Process. 5, 69–80 (2017)

    Article  Google Scholar 

  19. Rao, H., Zhang, P., ChangseSun, C.: Contrast enhancement for the infrared vein image of leg based on the optical angular spectrum theory. Signal Image Video Process. 11, 423–429 (2017)

    Article  Google Scholar 

  20. Maragatham, G., Roomi, S.Md M.: PSO-based stochastic resonance for automatic contrast enhancement of images. Signal Image Video Process. 10, 207–214 (2016)

    Article  Google Scholar 

  21. Santhi, K., Banu, R.S.D.W.: Contrast enhancement by modified octagon histogram equalization. Signal Image Video Process. 9(Suppl 1), S73–S87 (2015)

    Article  Google Scholar 

  22. Altin, E.M., Tunga, B.: High dimensional model representation in image processing. Int. Conf. Comput. Math. Methods Sci. Eng. 1, 55–64 (2014)

    Google Scholar 

  23. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  24. Demiralp, M.: High dimensional model representation and its application varieties. Math. Res. 9, 146–159 (2003)

    MATH  Google Scholar 

  25. Rabitz, H., Aliş, Ö.F.: General foundations of high-dimensional model representations. J. Math. Chem. 25(2–3), 197–233 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rabitz, H., Aliş, Ö.F., Shorter, J., Shim, K.: Efficient input–output model representations. Comput. Phys. Commun. 117(1), 11–20 (1999)

    Article  MATH  Google Scholar 

  27. Alış, Ö.F., Rabitz, H.: Efficient implementation of high dimensional model representations. J. Math. Chem. 29(2), 127–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tunga, M.A., Demiralp, M.: A new approach for data partitioning through high dimensional model representation. Int. J. Comput. Math. 85(12), 1779–1792 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Atto, A.M., Mercier, G.: High order structural image decomposition by using non-linear and non-convex regularizing objectives. Comput. Vis. Image Underst. 138, 38–50 (2015)

    Article  Google Scholar 

  30. Tunga, B., Demiralp, M.: Constancy maximization based weight optimization in high dimensional model representation. Numer. Algorithms 52(3), 435–459 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tunga, B., Demiralp, M.: Constancy maximization based weight optimization in high dimensional model representation for multivariate functions. J. Math. Chem. 49(9), 1996–2012 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zuiderveld, K.: Graphic Gems IV. Academic Press, San Diego (1994)

  33. Starck, J.L., Murtagh, F., Candes, E.J., Donoho, D.L.: Gray and color image contrast enhancement by the curvelet transform. IEEE Trans. Image Process. 12(6), 706–717 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oszust, M.: A regression-based family of measures for full-reference image quality assessment. Meas. Sci. Rev. 16(6), 316–325 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Tunga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunga, B., Koçanaoğulları, A. Digital image decomposition and contrast enhancement using high-dimensional model representation. SIViP 12, 299–306 (2018). https://doi.org/10.1007/s11760-017-1158-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1158-8

Keywords

Navigation